找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: CR Submanifolds of Complex Projective Space; Mirjana Djoric,Masafumi Okumura Book 2010 Springer-Verlag New York 2010 CR Submanifolds.Comp

[復(fù)制鏈接]
查看: 6787|回復(fù): 61
樓主
發(fā)表于 2025-3-21 16:43:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱CR Submanifolds of Complex Projective Space
編輯Mirjana Djoric,Masafumi Okumura
視頻videohttp://file.papertrans.cn/221/220549/220549.mp4
概述Presents many recent developments and results in the study of CR submanifolds not previously published.Provides a self-contained introduction to complex differential geometry.Provides relevant techniq
叢書名稱Developments in Mathematics
圖書封面Titlebook: CR Submanifolds of Complex Projective Space;  Mirjana Djoric,Masafumi Okumura Book 2010 Springer-Verlag New York 2010 CR  Submanifolds.Comp
描述Althoughsubmanifoldscomplexmanifoldshasbeenanactive?eldofstudyfor many years, in some sense this area is not su?ciently covered in the current literature. This text deals with the CR submanifolds of complex manifolds, with particular emphasis on CR submanifolds of complex projective space, and it covers the topics which are necessary for learning the basic properties of these manifolds. We are aware that it is impossible to give a complete overview of these submanifolds, but we hope that these notes can serve as an introduction to their study. We present the fundamental de?nitions and results necessary for reaching the frontiers of research in this ?eld. There are many monographs dealing with some current interesting topics in di?erential geometry, but most of these are written as encyclopedias, or research monographs, gathering recent results and giving the readers ample usefulinformationaboutthetopics. Therefore, thesekindsofmonographsare attractive to specialists in di?erential geometry and related ?elds and acce- able to professional di?erential geometers. However, for graduate students who are less advanced in di?erential geometry, these texts might be hard to read without ass
出版日期Book 2010
關(guān)鍵詞CR Submanifolds; Complex Manifolds; Complex Projective Space; Contact Manifolds; Djoric; K?hler manifold
版次1
doihttps://doi.org/10.1007/978-1-4419-0434-8
isbn_softcover978-1-4614-2477-2
isbn_ebook978-1-4419-0434-8Series ISSN 1389-2177 Series E-ISSN 2197-795X
issn_series 1389-2177
copyrightSpringer-Verlag New York 2010
The information of publication is updating

書目名稱CR Submanifolds of Complex Projective Space影響因子(影響力)




書目名稱CR Submanifolds of Complex Projective Space影響因子(影響力)學(xué)科排名




書目名稱CR Submanifolds of Complex Projective Space網(wǎng)絡(luò)公開度




書目名稱CR Submanifolds of Complex Projective Space網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱CR Submanifolds of Complex Projective Space被引頻次




書目名稱CR Submanifolds of Complex Projective Space被引頻次學(xué)科排名




書目名稱CR Submanifolds of Complex Projective Space年度引用




書目名稱CR Submanifolds of Complex Projective Space年度引用學(xué)科排名




書目名稱CR Submanifolds of Complex Projective Space讀者反饋




書目名稱CR Submanifolds of Complex Projective Space讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:58:23 | 只看該作者
1389-2177 n to complex differential geometry.Provides relevant techniqAlthoughsubmanifoldscomplexmanifoldshasbeenanactive?eldofstudyfor many years, in some sense this area is not su?ciently covered in the current literature. This text deals with the CR submanifolds of complex manifolds, with particular emphas
板凳
發(fā)表于 2025-3-22 00:47:18 | 只看該作者
Armand Faganel,Anita Trnav?evi?over, since a real hypersurface . of a K?hler manifold . has two geometric structures: an almost contact structure . and a submanifold structure represented by the shape operator . with respect to ., in this section we study the commutativity condition of . and . and we present its geometric meaning.
地板
發(fā)表于 2025-3-22 06:07:44 | 只看該作者
5#
發(fā)表于 2025-3-22 12:42:52 | 只看該作者
6#
發(fā)表于 2025-3-22 14:50:14 | 只看該作者
7#
發(fā)表于 2025-3-22 20:26:12 | 只看該作者
1389-2177 ntial geometry and related ?elds and acce- able to professional di?erential geometers. However, for graduate students who are less advanced in di?erential geometry, these texts might be hard to read without ass978-1-4614-2477-2978-1-4419-0434-8Series ISSN 1389-2177 Series E-ISSN 2197-795X
8#
發(fā)表于 2025-3-22 23:27:51 | 只看該作者
Book 2010onaboutthetopics. Therefore, thesekindsofmonographsare attractive to specialists in di?erential geometry and related ?elds and acce- able to professional di?erential geometers. However, for graduate students who are less advanced in di?erential geometry, these texts might be hard to read without ass
9#
發(fā)表于 2025-3-23 05:05:55 | 只看該作者
Structure equations of a submanifold, ..(.). We say then that . is immersed in . by . or that . is an . of .. When an immersion . is injective, it is called an . of . into .. We say then that . (or the image .(.)) is an . (or, simply, a .) of .. In this sense, throughout what follows, we adopt the convention that by submanifold we mean
10#
發(fā)表于 2025-3-23 08:38:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 02:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建阳市| 白玉县| 赞皇县| 微山县| 和田市| 佛冈县| 平原县| 确山县| 哈尔滨市| 应城市| 辽阳市| 共和县| 宾阳县| 育儿| 尉氏县| 临夏县| 连江县| 庄浪县| 辉县市| 甘谷县| 扎鲁特旗| 兴海县| 前郭尔| 司法| 德安县| 乐都县| 逊克县| 始兴县| 姚安县| 深泽县| 喀喇| 读书| 安国市| 西青区| 东丰县| 齐河县| 当阳市| 汶上县| 海林市| 宁阳县| 西丰县|