找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Breaking Barriers with Generative Intelligence. Using GI to Improve Human Education and Well-Being; First International Azza Basiouni,Clau

[復(fù)制鏈接]
樓主: hierarchy
11#
發(fā)表于 2025-3-23 12:38:28 | 只看該作者
12#
發(fā)表于 2025-3-23 14:19:39 | 只看該作者
13#
發(fā)表于 2025-3-23 20:48:57 | 只看該作者
Mikrobasierte Verfahren der Datenanalyse,tions where machine learning models predict mental health crises from patterns in user data. Additionally, AI‘s integration into physical health apps that track and analyse user activity and physiological data highlights its role in promoting healthier lifestyle choices and preventive healthcare pra
14#
發(fā)表于 2025-3-23 23:39:59 | 只看該作者
15#
發(fā)表于 2025-3-24 03:37:02 | 只看該作者
https://doi.org/10.1007/978-3-322-85952-5 out the factors that define the use and adoption of generative AI and its effects on other social sustainability factors like education, diversity, and readiness. The study therefore assists in filling gaps within the literature on AI in education and is beneficial for students, policymakers, educa
16#
發(fā)表于 2025-3-24 10:06:39 | 只看該作者
https://doi.org/10.1007/978-3-322-85952-5adaptability to online education. The model‘s performance was evaluated using accuracy, precision, recall, and F1-score metrics. The Random Forest model achieved an accuracy of 88.3%. It showed high precision and recall for the ‘High’ and ‘Moderate’ adaptability classes but lower performance in pred
17#
發(fā)表于 2025-3-24 11:25:02 | 只看該作者
18#
發(fā)表于 2025-3-24 17:50:04 | 只看該作者
https://doi.org/10.1007/978-3-322-85952-5ayers with ReLU activation functions and dropout layers to prevent overfitting. The model is trained over 200 epochs with a batch size of 5, utilizing the Adam optimizer and categorical cross-entropy loss function. The results demonstrate the chatbot’s high accuracy and effectiveness, achieving an a
19#
發(fā)表于 2025-3-24 22:27:52 | 只看該作者
20#
發(fā)表于 2025-3-25 00:52:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 11:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
荥经县| 威信县| 长武县| 芷江| 长子县| 凌云县| 滦南县| 梅河口市| 靖远县| 全椒县| 宜宾县| 荥经县| 祁门县| 南皮县| 会宁县| 郯城县| 河源市| 西平县| 临清市| 友谊县| 清苑县| 双牌县| 黎川县| 宣化县| 平武县| 迭部县| 鹤峰县| 南丰县| 扶风县| 全州县| 辉南县| 临洮县| 黔江区| 永顺县| 霍城县| 乐清市| 宜州市| 琼结县| 南阳市| 柯坪县| 公主岭市|