找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Binary Representation Learning on Visual Images; Learning to Hash for Zheng Zhang Book 2024 The Editor(s) (if applicable) and The Author(s)

[復(fù)制鏈接]
查看: 40401|回復(fù): 43
樓主
發(fā)表于 2025-3-21 19:04:42 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Binary Representation Learning on Visual Images
期刊簡(jiǎn)稱Learning to Hash for
影響因子2023Zheng Zhang
視頻videohttp://file.papertrans.cn/193/192679/192679.mp4
發(fā)行地址Broadens the understanding of binary representation learning in the context of visual data.Offers the latest research trends in binary representation, modeling and learning.Expounds the potential, int
圖書封面Titlebook: Binary Representation Learning on Visual Images; Learning to Hash for Zheng Zhang Book 2024 The Editor(s) (if applicable) and The Author(s)
影響因子.This book introduces pioneering developments in binary representation learning on visual images, a state-of-the-art data transformation methodology within the fields of machine learning and multimedia. Binary representation learning, often known as learning to hash or hashing, excels in converting high-dimensional data into compact binary codes meanwhile preserving the semantic attributes and maintaining the similarity measurements...The book provides a comprehensive introduction to the latest research in hashing-based visual image retrieval, with a focus on binary representations. These representations are crucial in enabling fast and reliable feature extraction and similarity assessments on large-scale data. This book offers an insightful analysis of various research methodologies in binary representation learning for visual images, ranging from basis shallow hashing, advanced high-order similarity-preserving hashing, deep hashing, as well as adversarial and robust deep hashing techniques. These approaches can empower readers to proficiently grasp the fundamental principles of the traditional and state-of-the-art methods in binary representations, modeling, and learning. The the
Pindex Book 2024
The information of publication is updating

書目名稱Binary Representation Learning on Visual Images影響因子(影響力)




書目名稱Binary Representation Learning on Visual Images影響因子(影響力)學(xué)科排名




書目名稱Binary Representation Learning on Visual Images網(wǎng)絡(luò)公開(kāi)度




書目名稱Binary Representation Learning on Visual Images網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Binary Representation Learning on Visual Images被引頻次




書目名稱Binary Representation Learning on Visual Images被引頻次學(xué)科排名




書目名稱Binary Representation Learning on Visual Images年度引用




書目名稱Binary Representation Learning on Visual Images年度引用學(xué)科排名




書目名稱Binary Representation Learning on Visual Images讀者反饋




書目名稱Binary Representation Learning on Visual Images讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:22:36 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:36:58 | 只看該作者
地板
發(fā)表于 2025-3-22 06:09:42 | 只看該作者
5#
發(fā)表于 2025-3-22 11:27:01 | 只看該作者
6#
發(fā)表于 2025-3-22 13:51:34 | 只看該作者
Metallniederschl?ge und Metallf?rbungenhor-induced asymmetric graph learning model. Additionally, a sparsity-guided selective quantization function minimizes space transformation losses, while a regressive semantic function enhances the flexibility of formulated semantics in hash code learning. The joint learning objective concurrently p
7#
發(fā)表于 2025-3-22 17:34:11 | 只看該作者
Metallo-Supramolecular Polymerssimilarities during the feature learning process. Additionally, well-designed latent subspace learning is incorporated to acquire noise-free latent features based on sparse-constrained supervised learning, fully leveraging the latent under-explored characteristics of data in subspace construction. L
8#
發(fā)表于 2025-3-22 21:26:42 | 只看該作者
9#
發(fā)表于 2025-3-23 04:25:11 | 只看該作者
Topics in Organometallic Chemistrycriminative and semantic properties jointly. Adversarial examples are generated by maximizing the Hamming distance between hash codes of adversarial samples and mainstay features, validated for efficacy in adversarial attack trials. Notably, this chapter formulates the formalized adversarial trainin
10#
發(fā)表于 2025-3-23 09:00:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
朝阳市| 资兴市| 泸水县| 桐梓县| 皋兰县| 海门市| 江永县| 梨树县| 观塘区| 沙坪坝区| 梧州市| 河北区| 阿尔山市| 徐州市| 汶上县| 枞阳县| 祁门县| 讷河市| 汕头市| 浠水县| 嘉峪关市| 武宁县| 神农架林区| 华亭县| 玉门市| 阿坝县| 新邵县| 乌拉特后旗| 天峻县| 桂平市| 柳江县| 长葛市| 九龙城区| 抚宁县| 铜山县| 榆中县| 翁源县| 潞西市| 尼木县| 德保县| 龙泉市|