找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Binary Representation Learning on Visual Images; Learning to Hash for Zheng Zhang Book 2024 The Editor(s) (if applicable) and The Author(s)

[復(fù)制鏈接]
樓主: 烈酒
11#
發(fā)表于 2025-3-23 10:43:14 | 只看該作者
Scalable Supervised Asymmetric Hashing,earns two distinctive hashing functions by minimizing regression loss for semantic label alignment and encoding loss for refined latent features. Notably, instead of utilizing only partial similarity correlations, SSAH directly employs the full-pairwise similarity matrix to prevent information loss
12#
發(fā)表于 2025-3-23 14:29:44 | 只看該作者
13#
發(fā)表于 2025-3-23 22:02:40 | 只看該作者
14#
發(fā)表于 2025-3-24 00:49:01 | 只看該作者
Ordinal-Preserving Latent Graph Hashing,similarities during the feature learning process. Additionally, well-designed latent subspace learning is incorporated to acquire noise-free latent features based on sparse-constrained supervised learning, fully leveraging the latent under-explored characteristics of data in subspace construction. L
15#
發(fā)表于 2025-3-24 03:50:01 | 只看該作者
16#
發(fā)表于 2025-3-24 08:53:04 | 只看該作者
Semantic-Aware Adversarial Training,criminative and semantic properties jointly. Adversarial examples are generated by maximizing the Hamming distance between hash codes of adversarial samples and mainstay features, validated for efficacy in adversarial attack trials. Notably, this chapter formulates the formalized adversarial trainin
17#
發(fā)表于 2025-3-24 13:19:55 | 只看該作者
shing techniques. These approaches can empower readers to proficiently grasp the fundamental principles of the traditional and state-of-the-art methods in binary representations, modeling, and learning. The the978-981-97-2114-6978-981-97-2112-2
18#
發(fā)表于 2025-3-24 16:41:13 | 只看該作者
19#
發(fā)表于 2025-3-24 22:20:53 | 只看該作者
20#
發(fā)表于 2025-3-25 02:47:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 16:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
土默特右旗| 江都市| 陵川县| 濮阳县| 尚义县| 武川县| 达日县| 山东| 三亚市| 昆明市| 阿克苏市| 敖汉旗| 恩施市| 柘城县| 太仓市| 巴林右旗| 石柱| 淮阳县| 韩城市| 石首市| 株洲县| 苏州市| 九龙坡区| 通许县| 温州市| 花莲县| 夏邑县| 永寿县| 宁城县| 安图县| 蓬安县| 疏附县| 汪清县| 武宁县| 平武县| 曲沃县| 苏尼特左旗| 华阴市| 高碑店市| 华容县| 南郑县|