找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bézier and B-Spline Techniques; Hartmut Prautzsch,Wolfgang Boehm,Marco Paluszny Textbook 2002 Springer-Verlag Berlin Heidelberg 2002 B-spl

[復(fù)制鏈接]
樓主: credit
41#
發(fā)表于 2025-3-28 15:40:58 | 只看該作者
42#
發(fā)表于 2025-3-28 21:12:37 | 只看該作者
Jason R. Finley,Farah Naaz,Francine W. Gohenerally, a curve is said to be .. if it has an r times continuously differentiate parametrization. An even more general smoothness concept is based on the continuity of higher order geometric invariants. Piecewise polynomial curves with this general smoothness can be nicely studied using a geometric interpretation of symmetric polynomials.
43#
發(fā)表于 2025-3-29 02:44:22 | 只看該作者
Jason R. Finley,Farah Naaz,Francine W. Gohuence, there are simple efficient knot insertion algorithms to convert a B-spline representation to a B-spline representation over a finer and also evenly spaced knot sequence. Moreover, these algorithms are the prototypes for the class of the so-called ..
44#
發(fā)表于 2025-3-29 04:09:41 | 只看該作者
45#
發(fā)表于 2025-3-29 08:47:43 | 只看該作者
46#
發(fā)表于 2025-3-29 14:11:59 | 只看該作者
47#
發(fā)表于 2025-3-29 18:54:04 | 只看該作者
48#
發(fā)表于 2025-3-29 19:59:35 | 只看該作者
49#
發(fā)表于 2025-3-30 01:02:01 | 只看該作者
Gabriele Fischer,Katharina RuhlandSplines are piecewise polynomial curves that are differentiable up to a prescribed order. The simplest example is a piecewise linear .. spline, i.e., a polygonal curve. Other examples are the piecewise cubic .. splines, as constructed in 4.5.
50#
發(fā)表于 2025-3-30 05:30:09 | 只看該作者
https://doi.org/10.1007/978-3-031-52819-4Most algorithms for curves in Bézier representation have a generalized form for splines. One of the most important spline algorithms is knot insertion. It can be used for degree elevation, the de Boor algorithm and subdivision. In particular, de Casteljau’s algorithm can be understood as a special multiple knot insertion.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 02:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌邑市| 嘉祥县| 高州市| 宝清县| 呼伦贝尔市| 寿光市| 周至县| 临朐县| 岑巩县| 锦州市| 太原市| 和顺县| 浑源县| 裕民县| 改则县| 西丰县| 永靖县| 东乡县| 峡江县| 乐都县| 东山县| 吉木萨尔县| 鄂托克前旗| 当阳市| 柳河县| 开远市| 津南区| 政和县| 绥化市| 曲阜市| 个旧市| 聂拉木县| 慈溪市| 贞丰县| 丽江市| 拉孜县| 革吉县| 广宁县| 奉新县| 晋江市| 神农架林区|