找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bézier and B-Spline Techniques; Hartmut Prautzsch,Wolfgang Boehm,Marco Paluszny Textbook 2002 Springer-Verlag Berlin Heidelberg 2002 B-spl

[復(fù)制鏈接]
樓主: credit
41#
發(fā)表于 2025-3-28 15:40:58 | 只看該作者
42#
發(fā)表于 2025-3-28 21:12:37 | 只看該作者
Jason R. Finley,Farah Naaz,Francine W. Gohenerally, a curve is said to be .. if it has an r times continuously differentiate parametrization. An even more general smoothness concept is based on the continuity of higher order geometric invariants. Piecewise polynomial curves with this general smoothness can be nicely studied using a geometric interpretation of symmetric polynomials.
43#
發(fā)表于 2025-3-29 02:44:22 | 只看該作者
Jason R. Finley,Farah Naaz,Francine W. Gohuence, there are simple efficient knot insertion algorithms to convert a B-spline representation to a B-spline representation over a finer and also evenly spaced knot sequence. Moreover, these algorithms are the prototypes for the class of the so-called ..
44#
發(fā)表于 2025-3-29 04:09:41 | 只看該作者
45#
發(fā)表于 2025-3-29 08:47:43 | 只看該作者
46#
發(fā)表于 2025-3-29 14:11:59 | 只看該作者
47#
發(fā)表于 2025-3-29 18:54:04 | 只看該作者
48#
發(fā)表于 2025-3-29 19:59:35 | 只看該作者
49#
發(fā)表于 2025-3-30 01:02:01 | 只看該作者
Gabriele Fischer,Katharina RuhlandSplines are piecewise polynomial curves that are differentiable up to a prescribed order. The simplest example is a piecewise linear .. spline, i.e., a polygonal curve. Other examples are the piecewise cubic .. splines, as constructed in 4.5.
50#
發(fā)表于 2025-3-30 05:30:09 | 只看該作者
https://doi.org/10.1007/978-3-031-52819-4Most algorithms for curves in Bézier representation have a generalized form for splines. One of the most important spline algorithms is knot insertion. It can be used for degree elevation, the de Boor algorithm and subdivision. In particular, de Casteljau’s algorithm can be understood as a special multiple knot insertion.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 02:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平安县| 东港市| 同心县| 阿坝| 家居| 克东县| 衡阳县| 丹凤县| 定西市| 探索| 梧州市| 大安市| 山阳县| 余干县| 兰西县| 普定县| 天水市| 呼和浩特市| 嘉禾县| 中西区| 丘北县| 和平县| 台东县| 随州市| 喀喇| 上栗县| 阿坝县| 建德市| 新疆| 砀山县| 浦县| 独山县| 兰州市| 禄丰县| 陇川县| 九龙县| 石河子市| 尤溪县| 台安县| 罗山县| 获嘉县|