找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bézier and B-Spline Techniques; Hartmut Prautzsch,Wolfgang Boehm,Marco Paluszny Textbook 2002 Springer-Verlag Berlin Heidelberg 2002 B-spl

[復(fù)制鏈接]
樓主: credit
11#
發(fā)表于 2025-3-23 09:48:29 | 只看該作者
Textbook 2002line representations evolved as the major tool to handle curves and surfaces. These representations are geometrically intuitive and meaningful and they lead to constructive numerically robust algorithms. It is the purpose of this book to provide a solid and unified derivation of the various properti
12#
發(fā)表于 2025-3-23 16:41:24 | 只看該作者
13#
發(fā)表于 2025-3-23 20:35:28 | 只看該作者
14#
發(fā)表于 2025-3-23 23:14:05 | 只看該作者
Jason R. Finley,Farah Naaz,Francine W. Gohn build multidimensional volumes by sweeping a surface or volume through space such that its control points move along curves. Again, one obtains control nets having properties analogous to those of the underlying curve representations.
15#
發(fā)表于 2025-3-24 02:28:00 | 只看該作者
Hartmut Prautzsch,Wolfgang Boehm,Marco PalusznyModern, graduate-level book on computer aided geometric design.Includes supplementary material:
16#
發(fā)表于 2025-3-24 09:47:48 | 只看該作者
17#
發(fā)表于 2025-3-24 12:02:27 | 只看該作者
18#
發(fā)表于 2025-3-24 15:16:53 | 只看該作者
Bézier techniquesen univariate and symmetric multivariate polynomials is explained and the basic CAGD algorithms based on this relationship are presented. The most important algorithm is de Casteljaués. It has several applications and serves as an important theoretical tool.
19#
發(fā)表于 2025-3-24 22:05:24 | 只看該作者
20#
發(fā)表于 2025-3-25 01:25:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 04:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
晋江市| 三河市| 桦南县| 额尔古纳市| 东台市| 安丘市| 栖霞市| 峨山| 灌南县| 准格尔旗| 迭部县| 同仁县| 镶黄旗| 科技| 彩票| 陇南市| 共和县| 辽阳县| 两当县| 土默特右旗| 个旧市| 临清市| 寻乌县| 和田县| 呼伦贝尔市| 都江堰市| 龙州县| 福鼎市| 临汾市| 开江县| 建瓯市| 上蔡县| 佳木斯市| 刚察县| 库尔勒市| 南木林县| 太原市| 峨眉山市| 和田县| 泾阳县| 廊坊市|