找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brownian Motion and its Applications to Mathematical Analysis; école d‘été de Proba Krzysztof Burdzy Book 2014 Springer International Publi

[復(fù)制鏈接]
樓主: 粘上
11#
發(fā)表于 2025-3-23 13:20:28 | 只看該作者
978-3-319-04393-7Springer International Publishing Switzerland 2014
12#
發(fā)表于 2025-3-23 16:57:43 | 只看該作者
Architekt Martin Kohlbauer - Ein Portrait,The chapter provides a short general review of Brownian motion and its place in probability theory. We also review some basic facts and formulas.
13#
發(fā)表于 2025-3-23 20:06:47 | 只看該作者
,Hauptschule Zwentendorf 2000–2003,This chapter is devoted to new probabilistic proofs of results previously proved using analytic techniques.
14#
發(fā)表于 2025-3-23 22:50:41 | 只看該作者
,Wohnhof Fuchsenfeld 1999–2003,This chapter is devoted to a general overview of the “hot spots” conjecture. To this day, the conjecture has been proved only for a very limited family of domains. Hence, it has a great potential as a source of interesting problems (related questions) and as a testing ground for new techniques.
15#
發(fā)表于 2025-3-24 04:12:10 | 只看該作者
,Fernheizwerk Süd, Wien 23 1993–1996,This chapter contains some simple facts and more advanced results on Nuemann eigenfunctions related to the hot spots conjecture.
16#
發(fā)表于 2025-3-24 09:18:51 | 只看該作者
17#
發(fā)表于 2025-3-24 14:13:05 | 只看該作者
18#
發(fā)表于 2025-3-24 16:11:04 | 只看該作者
https://doi.org/10.1057/9781137275523The hot spots problem is closely related to the problem of finding the location of the nodal line of the first non-constant eigenfunction. The chapter contains a few results on the latter problem.
19#
發(fā)表于 2025-3-24 21:31:09 | 只看該作者
20#
發(fā)表于 2025-3-24 23:29:43 | 只看該作者
Probabilistic Proofs of Classical Theorems,This chapter is devoted to new probabilistic proofs of results previously proved using analytic techniques.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 23:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永年县| 金塔县| 通江县| 安图县| 连南| 陆川县| 电白县| 大同市| 泉州市| 邵武市| 平果县| 周宁县| 东阿县| 垦利县| 石门县| 九江县| 南开区| 西乌| 定日县| 团风县| 天等县| 望江县| 鞍山市| 寿阳县| 山阳县| 观塘区| 富顺县| 永定县| 文山县| 天镇县| 嵊州市| 富宁县| 聂拉木县| 昌邑市| 合江县| 日土县| 普安县| 沙雅县| 手机| 磐安县| 慈溪市|