找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brownian Motion and its Applications to Mathematical Analysis; école d‘été de Proba Krzysztof Burdzy Book 2014 Springer International Publi

[復(fù)制鏈接]
查看: 21787|回復(fù): 42
樓主
發(fā)表于 2025-3-21 19:31:13 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Brownian Motion and its Applications to Mathematical Analysis
期刊簡稱école d‘été de Proba
影響因子2023Krzysztof Burdzy
視頻videohttp://file.papertrans.cn/192/191324/191324.mp4
發(fā)行地址Contains interesting examples of couplings.Gentle introduction to Brownian motion and analysis.Heuristic explanations of the main results
學(xué)科分類Lecture Notes in Mathematics
圖書封面Titlebook: Brownian Motion and its Applications to Mathematical Analysis; école d‘été de Proba Krzysztof Burdzy Book 2014 Springer International Publi
影響因子.These lecture notes provide an introduction to the applications of Brownian motion to analysis and more generally, connections between Brownian motion and analysis. Brownian motion is a well-suited model for a wide range of real random phenomena, from chaotic oscillations of microscopic objects, such as flower pollen in water, to stock market fluctuations. It is also a purely abstract mathematical tool which can be used to prove theorems in "deterministic" fields of mathematics..The notes include a brief review of Brownian motion and a section on probabilistic proofs of classical theorems in analysis. The bulk of the notes are devoted to recent (post-1990) applications of stochastic analysis to Neumann eigenfunctions, Neumann heat kernel and the heat equation in time-dependent domains..
Pindex Book 2014
The information of publication is updating

書目名稱Brownian Motion and its Applications to Mathematical Analysis影響因子(影響力)




書目名稱Brownian Motion and its Applications to Mathematical Analysis影響因子(影響力)學(xué)科排名




書目名稱Brownian Motion and its Applications to Mathematical Analysis網(wǎng)絡(luò)公開度




書目名稱Brownian Motion and its Applications to Mathematical Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Brownian Motion and its Applications to Mathematical Analysis被引頻次




書目名稱Brownian Motion and its Applications to Mathematical Analysis被引頻次學(xué)科排名




書目名稱Brownian Motion and its Applications to Mathematical Analysis年度引用




書目名稱Brownian Motion and its Applications to Mathematical Analysis年度引用學(xué)科排名




書目名稱Brownian Motion and its Applications to Mathematical Analysis讀者反饋




書目名稱Brownian Motion and its Applications to Mathematical Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:18:36 | 只看該作者
Reflected Brownian Motion in Time Dependent Domains,
板凳
發(fā)表于 2025-3-22 01:58:02 | 只看該作者
地板
發(fā)表于 2025-3-22 05:01:35 | 只看該作者
https://doi.org/10.1007/978-3-476-03898-2terpretation says that, informally speaking, a process conditioned to avoid the boundary of a domain on a time interval will be far from the boundary at the end of the time interval, with high probability. An application of the parabolic boundary Harnack principle is also given.
5#
發(fā)表于 2025-3-22 12:26:48 | 只看該作者
Krzysztof BurdzyContains interesting examples of couplings.Gentle introduction to Brownian motion and analysis.Heuristic explanations of the main results
6#
發(fā)表于 2025-3-22 14:50:01 | 只看該作者
7#
發(fā)表于 2025-3-22 20:08:07 | 只看該作者
8#
發(fā)表于 2025-3-22 21:40:20 | 只看該作者
https://doi.org/10.1007/978-3-476-03898-2terpretation says that, informally speaking, a process conditioned to avoid the boundary of a domain on a time interval will be far from the boundary at the end of the time interval, with high probability. An application of the parabolic boundary Harnack principle is also given.
9#
發(fā)表于 2025-3-23 03:44:09 | 只看該作者
10#
發(fā)表于 2025-3-23 06:53:38 | 只看該作者
https://doi.org/10.1007/978-3-319-04394-4"hot spots" conjecture; 60J65, 60H30, 60G17; Brownian motion; Neumann eigenfunction; coupling; heat equat
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 21:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东阳市| 高雄市| 汝城县| 德州市| 上虞市| 礼泉县| 灵宝市| 彩票| 衡阳县| 洛阳市| 南丹县| 望都县| 西峡县| 宿州市| 武平县| 阳高县| 日喀则市| 陆河县| 老河口市| 凌云县| 焦作市| 华安县| 敖汉旗| 龙川县| 兰州市| 芦溪县| 普安县| 宝山区| 观塘区| 林州市| 清新县| 阳高县| 扎兰屯市| 兴仁县| 沾益县| 房山区| 兖州市| 揭东县| 胶州市| 云阳县| 镇雄县|