找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bringing Machine Learning to Software-Defined Networks; Zehua Guo Book 2022 The Author(s), under exclusive license to Springer Nature Sing

[復(fù)制鏈接]
查看: 53862|回復(fù): 37
樓主
發(fā)表于 2025-3-21 17:06:27 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Bringing Machine Learning to Software-Defined Networks
影響因子2023Zehua Guo
視頻videohttp://file.papertrans.cn/191/190849/190849.mp4
發(fā)行地址Solves open problems for improving network performance of Software-Defined Networking.Broadens the understanding on application of machine learning.Includes case studies that illustrate how to use mac
學(xué)科分類SpringerBriefs in Computer Science
圖書封面Titlebook: Bringing Machine Learning to Software-Defined Networks;  Zehua Guo Book 2022 The Author(s), under exclusive license to Springer Nature Sing
影響因子Emerging machine learning techniques bring new opportunities to flexible network control and management. This book focuses on using state-of-the-art machine learning-based approaches to improve the performance of Software-Defined Networking (SDN). It will apply several innovative machine learning methods (e.g., Deep Reinforcement Learning, Multi-Agent Reinforcement Learning, and Graph Neural Network) to traffic engineering and controller load balancing in software-defined wide area networks, as well as flow scheduling, coflow scheduling, and flow migration for network function virtualization in software-defined data center networks. It helps readers reflect on several practical problems of deploying SDN and learn how to solve the problems by taking advantage of existing machine learning techniques. The book elaborates on the formulation of each problem, explains design details for each scheme, and provides solutions by running mathematical optimization processes, conducting simulated experiments, and analyzing the experimental results.
Pindex Book 2022
The information of publication is updating

書目名稱Bringing Machine Learning to Software-Defined Networks影響因子(影響力)




書目名稱Bringing Machine Learning to Software-Defined Networks影響因子(影響力)學(xué)科排名




書目名稱Bringing Machine Learning to Software-Defined Networks網(wǎng)絡(luò)公開度




書目名稱Bringing Machine Learning to Software-Defined Networks網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Bringing Machine Learning to Software-Defined Networks被引頻次




書目名稱Bringing Machine Learning to Software-Defined Networks被引頻次學(xué)科排名




書目名稱Bringing Machine Learning to Software-Defined Networks年度引用




書目名稱Bringing Machine Learning to Software-Defined Networks年度引用學(xué)科排名




書目名稱Bringing Machine Learning to Software-Defined Networks讀者反饋




書目名稱Bringing Machine Learning to Software-Defined Networks讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:28:37 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:38:36 | 只看該作者
Deep Reinforcement Learning-Based Flow Scheduling for Power-Efficient Data Center Networks,ally collects traffic distribution from switches to train its DRL model. The well-trained DRL agent of SmartFCT can quickly analyze the complicated traffic characteristics and adaptively generate an action for scheduling flows and deliberately configuring margins for different links. Following the g
地板
發(fā)表于 2025-3-22 08:22:13 | 只看該作者
5#
發(fā)表于 2025-3-22 10:18:50 | 只看該作者
2191-5768 earning.Includes case studies that illustrate how to use macEmerging machine learning techniques bring new opportunities to flexible network control and management. This book focuses on using state-of-the-art machine learning-based approaches to improve the performance of Software-Defined Networking
6#
發(fā)表于 2025-3-22 16:13:39 | 只看該作者
7#
發(fā)表于 2025-3-22 20:30:35 | 只看該作者
C. Martius,H. Tiessen,P. L. G. Vlekrmation. DeepWeave learns from the historic workload trace to train the neural networks of the DRL agent and encodes the scheduling policy in the neural networks, which make coflow scheduling decisions without expert knowledge or a pre-assumed model.
8#
發(fā)表于 2025-3-22 21:54:04 | 只看該作者
9#
發(fā)表于 2025-3-23 04:55:07 | 只看該作者
10#
發(fā)表于 2025-3-23 07:00:33 | 只看該作者
Book 2022achine learning-based approaches to improve the performance of Software-Defined Networking (SDN). It will apply several innovative machine learning methods (e.g., Deep Reinforcement Learning, Multi-Agent Reinforcement Learning, and Graph Neural Network) to traffic engineering and controller load bal
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 01:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹿邑县| 宁远县| 太原市| 长沙市| 当雄县| 尉犁县| 崇州市| 南丹县| 海丰县| 临邑县| 星座| 青岛市| 临安市| 体育| 安达市| 望都县| 隆子县| 荆州市| 麻江县| 南丹县| 加查县| 公安县| 自治县| 宁武县| 乐清市| 凤台县| 固始县| 广河县| 河北区| 盖州市| 巢湖市| 蓬莱市| 德令哈市| 东方市| 宕昌县| 乌鲁木齐县| 九龙县| 东丽区| 安新县| 华阴市| 五家渠市|