找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bringing Machine Learning to Software-Defined Networks; Zehua Guo Book 2022 The Author(s), under exclusive license to Springer Nature Sing

[復制鏈接]
查看: 53861|回復: 37
樓主
發(fā)表于 2025-3-21 17:06:27 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Bringing Machine Learning to Software-Defined Networks
影響因子2023Zehua Guo
視頻videohttp://file.papertrans.cn/191/190849/190849.mp4
發(fā)行地址Solves open problems for improving network performance of Software-Defined Networking.Broadens the understanding on application of machine learning.Includes case studies that illustrate how to use mac
學科分類SpringerBriefs in Computer Science
圖書封面Titlebook: Bringing Machine Learning to Software-Defined Networks;  Zehua Guo Book 2022 The Author(s), under exclusive license to Springer Nature Sing
影響因子Emerging machine learning techniques bring new opportunities to flexible network control and management. This book focuses on using state-of-the-art machine learning-based approaches to improve the performance of Software-Defined Networking (SDN). It will apply several innovative machine learning methods (e.g., Deep Reinforcement Learning, Multi-Agent Reinforcement Learning, and Graph Neural Network) to traffic engineering and controller load balancing in software-defined wide area networks, as well as flow scheduling, coflow scheduling, and flow migration for network function virtualization in software-defined data center networks. It helps readers reflect on several practical problems of deploying SDN and learn how to solve the problems by taking advantage of existing machine learning techniques. The book elaborates on the formulation of each problem, explains design details for each scheme, and provides solutions by running mathematical optimization processes, conducting simulated experiments, and analyzing the experimental results.
Pindex Book 2022
The information of publication is updating

書目名稱Bringing Machine Learning to Software-Defined Networks影響因子(影響力)




書目名稱Bringing Machine Learning to Software-Defined Networks影響因子(影響力)學科排名




書目名稱Bringing Machine Learning to Software-Defined Networks網(wǎng)絡公開度




書目名稱Bringing Machine Learning to Software-Defined Networks網(wǎng)絡公開度學科排名




書目名稱Bringing Machine Learning to Software-Defined Networks被引頻次




書目名稱Bringing Machine Learning to Software-Defined Networks被引頻次學科排名




書目名稱Bringing Machine Learning to Software-Defined Networks年度引用




書目名稱Bringing Machine Learning to Software-Defined Networks年度引用學科排名




書目名稱Bringing Machine Learning to Software-Defined Networks讀者反饋




書目名稱Bringing Machine Learning to Software-Defined Networks讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:28:37 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:38:36 | 只看該作者
Deep Reinforcement Learning-Based Flow Scheduling for Power-Efficient Data Center Networks,ally collects traffic distribution from switches to train its DRL model. The well-trained DRL agent of SmartFCT can quickly analyze the complicated traffic characteristics and adaptively generate an action for scheduling flows and deliberately configuring margins for different links. Following the g
地板
發(fā)表于 2025-3-22 08:22:13 | 只看該作者
5#
發(fā)表于 2025-3-22 10:18:50 | 只看該作者
2191-5768 earning.Includes case studies that illustrate how to use macEmerging machine learning techniques bring new opportunities to flexible network control and management. This book focuses on using state-of-the-art machine learning-based approaches to improve the performance of Software-Defined Networking
6#
發(fā)表于 2025-3-22 16:13:39 | 只看該作者
7#
發(fā)表于 2025-3-22 20:30:35 | 只看該作者
C. Martius,H. Tiessen,P. L. G. Vlekrmation. DeepWeave learns from the historic workload trace to train the neural networks of the DRL agent and encodes the scheduling policy in the neural networks, which make coflow scheduling decisions without expert knowledge or a pre-assumed model.
8#
發(fā)表于 2025-3-22 21:54:04 | 只看該作者
9#
發(fā)表于 2025-3-23 04:55:07 | 只看該作者
10#
發(fā)表于 2025-3-23 07:00:33 | 只看該作者
Book 2022achine learning-based approaches to improve the performance of Software-Defined Networking (SDN). It will apply several innovative machine learning methods (e.g., Deep Reinforcement Learning, Multi-Agent Reinforcement Learning, and Graph Neural Network) to traffic engineering and controller load bal
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 01:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
龙江县| 滨州市| 百色市| 贵港市| 沭阳县| 抚远县| 扎鲁特旗| 天等县| 武宁县| 朔州市| 巴林右旗| 南充市| 嘉祥县| 鄄城县| 大宁县| 霍城县| 临朐县| 汕头市| 青川县| 平泉县| 常熟市| 绿春县| 蛟河市| 泌阳县| 吐鲁番市| 沙洋县| 陇南市| 武冈市| 秦安县| 右玉县| 石泉县| 阳谷县| 广饶县| 万州区| 巧家县| 芷江| 新巴尔虎右旗| 普格县| 通州市| 张家口市| 沭阳县|