找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bridging Algebra, Geometry, and Topology; Denis Ibadula,Willem Veys Conference proceedings 2014 Springer International Publishing Switzerl

[復(fù)制鏈接]
樓主: Malinger
41#
發(fā)表于 2025-3-28 18:27:30 | 只看該作者
42#
發(fā)表于 2025-3-28 19:46:36 | 只看該作者
Non-Abelian Resonance: Product and Coproduct Formulas,We investigate the resonance varieties attached to a commutative differential graded algebra and to a representation of a Lie algebra, with emphasis on how these varieties behave under finite products and coproducts.
43#
發(fā)表于 2025-3-28 23:55:51 | 只看該作者
44#
發(fā)表于 2025-3-29 03:16:11 | 只看該作者
45#
發(fā)表于 2025-3-29 07:24:06 | 只看該作者
Springer Proceedings in Mathematics & Statisticshttp://image.papertrans.cn/b/image/190751.jpg
46#
發(fā)表于 2025-3-29 15:05:03 | 只看該作者
Solving via Modular Methods,equations over the rationals. In fact, we compute a triangular decomposition using M?ller’s algorithm (M?ller, Appl. Algebra Eng. Commun. Comput. 4:217–230, 1993) of the corresponding ideal in the polynomial ring over the rationals using modular methods, and then apply a solver for univariate polynomials.
47#
發(fā)表于 2025-3-29 16:54:32 | 只看該作者
Hodge Invariants of Higher-Dimensional Analogues of Kodaira Surfaces,s, by using methods of toric geometry (see also [9, 16]). Some higher-dimensional analogues of Kodaira surfaces are obtained as hypersurfaces in these Inoue manifolds. In this paper we construct another higher-dimensional analogues of primary Kodaira surfaces and we compute their invariants as the Hodge numbers.
48#
發(fā)表于 2025-3-29 21:19:05 | 只看該作者
Four Generated, Squarefree, Monomial Ideals,d by three monomials of degrees . and a set of monomials of degrees ≥ . + 1, or by four special monomials of degrees .. If the Stanley depth of .∕. is ≤ . + 1 then the usual depth of .∕. is ≤ . + 1 too.
49#
發(fā)表于 2025-3-30 00:47:44 | 只看該作者
50#
發(fā)表于 2025-3-30 06:41:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 02:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五寨县| 偏关县| 乌苏市| 呼图壁县| 旌德县| 赣州市| 威远县| 丹寨县| 陇西县| 英超| 铜山县| 上饶县| 新田县| 马关县| 曲靖市| 儋州市| 宜春市| 陇南市| 南召县| 石景山区| 宜君县| 长寿区| 宁都县| 金川县| 新干县| 昭通市| 黄冈市| 皮山县| 都匀市| 巴青县| 溧阳市| 丹阳市| 新龙县| 剑河县| 肥西县| 西林县| 钟山县| 滨州市| 阳江市| 福泉市| 茶陵县|