找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bridging Algebra, Geometry, and Topology; Denis Ibadula,Willem Veys Conference proceedings 2014 Springer International Publishing Switzerl

[復(fù)制鏈接]
查看: 44525|回復(fù): 60
樓主
發(fā)表于 2025-3-21 17:28:16 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Bridging Algebra, Geometry, and Topology
影響因子2023Denis Ibadula,Willem Veys
視頻videohttp://file.papertrans.cn/191/190751/190751.mp4
發(fā)行地址International group of scholars.Emphasis on computational approaches to enduring mathematical questions.Examines the relationship between recent breakthroughs in algebra, geometry and topology
學(xué)科分類Springer Proceedings in Mathematics & Statistics
圖書封面Titlebook: Bridging Algebra, Geometry, and Topology;  Denis Ibadula,Willem Veys Conference proceedings 2014 Springer International Publishing Switzerl
影響因子.Algebra, geometry and topology cover a variety of different, but intimately related research fields in modern mathematics. This book focuses on specific aspects of this interaction. The present volume contains refereed papers which were presented at the International Conference .“Experimental and Theoretical Methods in Algebra, Geometry and Topology”., held in Eforie Nord (near Constanta), Romania, during 20-25 June 2013. The conference was devoted to the 60th anniversary of the distinguished Romanian mathematicians Alexandru Dimca and ?tefan Papadima. The selected papers consist of original research work and a survey paper. They are intended for a large audience, including researchers and graduate students interested in algebraic geometry, combinatorics, topology, hyperplane arrangements and commutative algebra. The papers are written by well-known experts from different fields of mathematics, affiliated to universities from all over the word, they cover a broad range of topics and explore the research frontiers of a wide variety of contemporary problems of modern mathematics..
Pindex Conference proceedings 2014
The information of publication is updating

書目名稱Bridging Algebra, Geometry, and Topology影響因子(影響力)




書目名稱Bridging Algebra, Geometry, and Topology影響因子(影響力)學(xué)科排名




書目名稱Bridging Algebra, Geometry, and Topology網(wǎng)絡(luò)公開度




書目名稱Bridging Algebra, Geometry, and Topology網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Bridging Algebra, Geometry, and Topology被引頻次




書目名稱Bridging Algebra, Geometry, and Topology被引頻次學(xué)科排名




書目名稱Bridging Algebra, Geometry, and Topology年度引用




書目名稱Bridging Algebra, Geometry, and Topology年度引用學(xué)科排名




書目名稱Bridging Algebra, Geometry, and Topology讀者反饋




書目名稱Bridging Algebra, Geometry, and Topology讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:19:23 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:53:40 | 只看該作者
地板
發(fā)表于 2025-3-22 05:02:03 | 只看該作者
Hodge Invariants of Higher-Dimensional Analogues of Kodaira Surfaces,s, by using methods of toric geometry (see also [9, 16]). Some higher-dimensional analogues of Kodaira surfaces are obtained as hypersurfaces in these Inoue manifolds. In this paper we construct another higher-dimensional analogues of primary Kodaira surfaces and we compute their invariants as the H
5#
發(fā)表于 2025-3-22 12:01:15 | 只看該作者
6#
發(fā)表于 2025-3-22 16:14:04 | 只看該作者
7#
發(fā)表于 2025-3-22 19:09:39 | 只看該作者
8#
發(fā)表于 2025-3-23 00:10:09 | 只看該作者
Fibonacci Numbers and Self-Dual Lattice Structures for Plane Branches,ts needed to achieve its minimal embedded resolution. We show that there are .. topological types of blow-up complexity ., where .. is the .-th Fibonacci number. We introduce complexity-preserving operations on topological types which increase the multiplicity and we deduce that the maximal multipli
9#
發(fā)表于 2025-3-23 01:21:59 | 只看該作者
Four Generated, Squarefree, Monomial Ideals,d by three monomials of degrees . and a set of monomials of degrees ≥ . + 1, or by four special monomials of degrees .. If the Stanley depth of .∕. is ≤ . + 1 then the usual depth of .∕. is ≤ . + 1 too.
10#
發(fā)表于 2025-3-23 08:12:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 02:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
修水县| 耿马| 嘉义县| 关岭| 沂水县| 肥西县| 巴里| 额尔古纳市| 彩票| 临武县| 公主岭市| 安丘市| 台南市| 临邑县| 轮台县| 丰县| 原阳县| 太保市| 印江| 陕西省| 土默特左旗| 桐梓县| 灵丘县| 太和县| 泰州市| 正定县| 长治市| 和政县| 平安县| 湖南省| 荣成市| 汤阴县| 耿马| 蕉岭县| 广丰县| 清徐县| 福贡县| 隆安县| 博野县| 曲靖市| 铁岭市|