找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Branched Standard Spines of 3-manifolds; Riccardo Benedetti,Carlo Petronio Book 1997 Springer-Verlag Berlin Heidelberg 1997 Calc.Finite.In

[復制鏈接]
查看: 37022|回復: 47
樓主
發(fā)表于 2025-3-21 16:11:47 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Branched Standard Spines of 3-manifolds
影響因子2023Riccardo Benedetti,Carlo Petronio
視頻videohttp://file.papertrans.cn/191/190351/190351.mp4
學科分類Lecture Notes in Mathematics
圖書封面Titlebook: Branched Standard Spines of 3-manifolds;  Riccardo Benedetti,Carlo Petronio Book 1997 Springer-Verlag Berlin Heidelberg 1997 Calc.Finite.In
影響因子This book provides a unified combinatorial realization of the categroies of (closed, oriented) 3-manifolds, combed 3-manifolds, framed 3-manifolds and spin 3-manifolds. In all four cases the objects of the realization are finite enhanced graphs, and only finitely many local moves have to be taken into account. These realizations are based on the notion of branched standard spine, introduced in the book as a combination of the notion of branched surface with that of standard spine. The book is intended for readers interested in low-dimensional topology, and some familiarity with the basics is assumed. A list of questions, some of which concerning relations with the theory of quantum invariants, is enclosed.
Pindex Book 1997
The information of publication is updating

書目名稱Branched Standard Spines of 3-manifolds影響因子(影響力)




書目名稱Branched Standard Spines of 3-manifolds影響因子(影響力)學科排名




書目名稱Branched Standard Spines of 3-manifolds網(wǎng)絡(luò)公開度




書目名稱Branched Standard Spines of 3-manifolds網(wǎng)絡(luò)公開度學科排名




書目名稱Branched Standard Spines of 3-manifolds被引頻次




書目名稱Branched Standard Spines of 3-manifolds被引頻次學科排名




書目名稱Branched Standard Spines of 3-manifolds年度引用




書目名稱Branched Standard Spines of 3-manifolds年度引用學科排名




書目名稱Branched Standard Spines of 3-manifolds讀者反饋




書目名稱Branched Standard Spines of 3-manifolds讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:12:55 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:56:14 | 只看該作者
地板
發(fā)表于 2025-3-22 05:37:58 | 只看該作者
5#
發(fā)表于 2025-3-22 09:49:16 | 只看該作者
https://doi.org/10.1007/BFb0093620Calc; Finite; Invariant; Topological manifolds; calculus; cohomology; computation; differential equations; d
6#
發(fā)表于 2025-3-22 14:32:13 | 只看該作者
7#
發(fā)表于 2025-3-22 20:39:33 | 只看該作者
8#
發(fā)表于 2025-3-23 00:58:18 | 只看該作者
9#
發(fā)表于 2025-3-23 04:06:57 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:24:42 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 23:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
桐梓县| 潞城市| 东至县| 漳浦县| 富裕县| 兰州市| 锡林浩特市| 玉山县| 丰都县| 蓬安县| 茂名市| 喜德县| 余庆县| 长丰县| 曲阳县| 镇巴县| 仪陇县| 丽水市| 兴义市| 华安县| 长顺县| 黄浦区| 宜章县| 新巴尔虎左旗| 徐汇区| 十堰市| 武安市| 成武县| 聂拉木县| 砀山县| 邳州市| 海丰县| 新和县| 宜都市| 项城市| 涪陵区| 彝良县| 安陆市| 新昌县| 丹东市| 金湖县|