找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Branched Standard Spines of 3-manifolds; Riccardo Benedetti,Carlo Petronio Book 1997 Springer-Verlag Berlin Heidelberg 1997 Calc.Finite.In

[復(fù)制鏈接]
查看: 37024|回復(fù): 47
樓主
發(fā)表于 2025-3-21 16:11:47 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Branched Standard Spines of 3-manifolds
影響因子2023Riccardo Benedetti,Carlo Petronio
視頻videohttp://file.papertrans.cn/191/190351/190351.mp4
學(xué)科分類Lecture Notes in Mathematics
圖書封面Titlebook: Branched Standard Spines of 3-manifolds;  Riccardo Benedetti,Carlo Petronio Book 1997 Springer-Verlag Berlin Heidelberg 1997 Calc.Finite.In
影響因子This book provides a unified combinatorial realization of the categroies of (closed, oriented) 3-manifolds, combed 3-manifolds, framed 3-manifolds and spin 3-manifolds. In all four cases the objects of the realization are finite enhanced graphs, and only finitely many local moves have to be taken into account. These realizations are based on the notion of branched standard spine, introduced in the book as a combination of the notion of branched surface with that of standard spine. The book is intended for readers interested in low-dimensional topology, and some familiarity with the basics is assumed. A list of questions, some of which concerning relations with the theory of quantum invariants, is enclosed.
Pindex Book 1997
The information of publication is updating

書目名稱Branched Standard Spines of 3-manifolds影響因子(影響力)




書目名稱Branched Standard Spines of 3-manifolds影響因子(影響力)學(xué)科排名




書目名稱Branched Standard Spines of 3-manifolds網(wǎng)絡(luò)公開度




書目名稱Branched Standard Spines of 3-manifolds網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Branched Standard Spines of 3-manifolds被引頻次




書目名稱Branched Standard Spines of 3-manifolds被引頻次學(xué)科排名




書目名稱Branched Standard Spines of 3-manifolds年度引用




書目名稱Branched Standard Spines of 3-manifolds年度引用學(xué)科排名




書目名稱Branched Standard Spines of 3-manifolds讀者反饋




書目名稱Branched Standard Spines of 3-manifolds讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:12:55 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:56:14 | 只看該作者
地板
發(fā)表于 2025-3-22 05:37:58 | 只看該作者
5#
發(fā)表于 2025-3-22 09:49:16 | 只看該作者
https://doi.org/10.1007/BFb0093620Calc; Finite; Invariant; Topological manifolds; calculus; cohomology; computation; differential equations; d
6#
發(fā)表于 2025-3-22 14:32:13 | 只看該作者
7#
發(fā)表于 2025-3-22 20:39:33 | 只看該作者
8#
發(fā)表于 2025-3-23 00:58:18 | 只看該作者
9#
發(fā)表于 2025-3-23 04:06:57 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:24:42 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 01:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德保县| 女性| 泰宁县| 武宁县| 朔州市| 建平县| 宝清县| 辽阳市| 额尔古纳市| 南靖县| 湖南省| 平乡县| 女性| 琼海市| 蓬溪县| 龙胜| 榆树市| 泸水县| 喜德县| 五莲县| 西乌珠穆沁旗| 长子县| 肇庆市| 牙克石市| 丰都县| 凌源市| 宜春市| 红河县| 石楼县| 泗洪县| 于田县| 桦川县| 南溪县| 闻喜县| 绍兴县| 和平县| 青川县| 宁都县| 沅江市| 湾仔区| 二手房|