找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Brakke‘s Mean Curvature Flow; An Introduction Yoshihiro Tonegawa Book 2019 The Author(s), under exclusive license to Springer Nature Singap

[復(fù)制鏈接]
查看: 51466|回復(fù): 38
樓主
發(fā)表于 2025-3-21 16:43:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Brakke‘s Mean Curvature Flow
期刊簡(jiǎn)稱An Introduction
影響因子2023Yoshihiro Tonegawa
視頻videohttp://file.papertrans.cn/191/190340/190340.mp4
發(fā)行地址Is the first exposition of Brakke’s mean curvature flow, a subject that interests many researchers.Uses accessible language, not highly technical terminology, for all readers interested in geometric m
學(xué)科分類SpringerBriefs in Mathematics
圖書(shū)封面Titlebook: Brakke‘s Mean Curvature Flow; An Introduction Yoshihiro Tonegawa Book 2019 The Author(s), under exclusive license to Springer Nature Singap
影響因子This book explains the notion of Brakke’s mean curvature flow and its existence and regularity theories without assuming familiarity with geometric measure theory. The focus of study is a time-parameterized family of .k.-dimensional surfaces in the .n.-dimensional Euclidean space (1 ≤?.k?.
Pindex Book 2019
The information of publication is updating

書(shū)目名稱Brakke‘s Mean Curvature Flow影響因子(影響力)




書(shū)目名稱Brakke‘s Mean Curvature Flow影響因子(影響力)學(xué)科排名




書(shū)目名稱Brakke‘s Mean Curvature Flow網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Brakke‘s Mean Curvature Flow網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Brakke‘s Mean Curvature Flow被引頻次




書(shū)目名稱Brakke‘s Mean Curvature Flow被引頻次學(xué)科排名




書(shū)目名稱Brakke‘s Mean Curvature Flow年度引用




書(shū)目名稱Brakke‘s Mean Curvature Flow年度引用學(xué)科排名




書(shū)目名稱Brakke‘s Mean Curvature Flow讀者反饋




書(shū)目名稱Brakke‘s Mean Curvature Flow讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:23:55 | 只看該作者
https://doi.org/10.1007/978-3-642-18720-9.) at .?∈?.(.). Here we consider how one may characterize the normal velocity using integration. The reason for such a pursuit is that, in the end, we want to replace .(.) by a general varifold. To do so, let . be a non-negative “test function”.
板凳
發(fā)表于 2025-3-22 02:05:42 | 只看該作者
地板
發(fā)表于 2025-3-22 05:58:42 | 只看該作者
5#
發(fā)表于 2025-3-22 11:12:02 | 只看該作者
Definition of the Brakke Flow,.) at .?∈?.(.). Here we consider how one may characterize the normal velocity using integration. The reason for such a pursuit is that, in the end, we want to replace .(.) by a general varifold. To do so, let . be a non-negative “test function”.
6#
發(fā)表于 2025-3-22 16:01:16 | 只看該作者
A General Existence Theorem for a Brakke Flow in Codimension One, some minor assumption, Brakke gave a proof of a time-global existence of rectifiable Brakke flow starting from the given data. When the initial data is an integral .-varifold, the obtained flow is also integral in the sense defined in Chap. ..
7#
發(fā)表于 2025-3-22 20:56:53 | 只看該作者
Allard Regularity Theory,ose that we have a varifold .?∈..(.) which happens to be a time-independent Brakke flow as we defined in Sect. .. This should mean that the normal velocity . is 0 and that .?=?. implies .?=?0, which means that .?is stationary. Let us adhere to the definition of the Brakke flow as in Definition . and check if this is indeed the case.
8#
發(fā)表于 2025-3-22 22:57:29 | 只看該作者
Yoshihiro TonegawaIs the first exposition of Brakke’s mean curvature flow, a subject that interests many researchers.Uses accessible language, not highly technical terminology, for all readers interested in geometric m
9#
發(fā)表于 2025-3-23 03:22:46 | 只看該作者
10#
發(fā)表于 2025-3-23 09:20:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 18:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
正宁县| 鸡泽县| 庆云县| 罗甸县| 民勤县| 宁津县| 体育| 教育| 新竹县| 克拉玛依市| 沙坪坝区| 定结县| 阳春市| 滁州市| 康平县| 敦煌市| 宜黄县| 九龙城区| 桂阳县| 凤台县| 鹤庆县| 建瓯市| 彰化市| 肇州县| 沈丘县| 化德县| 溆浦县| 渝中区| 乾安县| 涟源市| 紫金县| 大冶市| 五指山市| 新田县| 桂林市| 明溪县| 井冈山市| 浦江县| 侯马市| 博爱县| 绩溪县|