找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brakke‘s Mean Curvature Flow; An Introduction Yoshihiro Tonegawa Book 2019 The Author(s), under exclusive license to Springer Nature Singap

[復(fù)制鏈接]
查看: 51467|回復(fù): 38
樓主
發(fā)表于 2025-3-21 16:43:15 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Brakke‘s Mean Curvature Flow
期刊簡稱An Introduction
影響因子2023Yoshihiro Tonegawa
視頻videohttp://file.papertrans.cn/191/190340/190340.mp4
發(fā)行地址Is the first exposition of Brakke’s mean curvature flow, a subject that interests many researchers.Uses accessible language, not highly technical terminology, for all readers interested in geometric m
學(xué)科分類SpringerBriefs in Mathematics
圖書封面Titlebook: Brakke‘s Mean Curvature Flow; An Introduction Yoshihiro Tonegawa Book 2019 The Author(s), under exclusive license to Springer Nature Singap
影響因子This book explains the notion of Brakke’s mean curvature flow and its existence and regularity theories without assuming familiarity with geometric measure theory. The focus of study is a time-parameterized family of .k.-dimensional surfaces in the .n.-dimensional Euclidean space (1 ≤?.k?.
Pindex Book 2019
The information of publication is updating

書目名稱Brakke‘s Mean Curvature Flow影響因子(影響力)




書目名稱Brakke‘s Mean Curvature Flow影響因子(影響力)學(xué)科排名




書目名稱Brakke‘s Mean Curvature Flow網(wǎng)絡(luò)公開度




書目名稱Brakke‘s Mean Curvature Flow網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Brakke‘s Mean Curvature Flow被引頻次




書目名稱Brakke‘s Mean Curvature Flow被引頻次學(xué)科排名




書目名稱Brakke‘s Mean Curvature Flow年度引用




書目名稱Brakke‘s Mean Curvature Flow年度引用學(xué)科排名




書目名稱Brakke‘s Mean Curvature Flow讀者反饋




書目名稱Brakke‘s Mean Curvature Flow讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:23:55 | 只看該作者
https://doi.org/10.1007/978-3-642-18720-9.) at .?∈?.(.). Here we consider how one may characterize the normal velocity using integration. The reason for such a pursuit is that, in the end, we want to replace .(.) by a general varifold. To do so, let . be a non-negative “test function”.
板凳
發(fā)表于 2025-3-22 02:05:42 | 只看該作者
地板
發(fā)表于 2025-3-22 05:58:42 | 只看該作者
5#
發(fā)表于 2025-3-22 11:12:02 | 只看該作者
Definition of the Brakke Flow,.) at .?∈?.(.). Here we consider how one may characterize the normal velocity using integration. The reason for such a pursuit is that, in the end, we want to replace .(.) by a general varifold. To do so, let . be a non-negative “test function”.
6#
發(fā)表于 2025-3-22 16:01:16 | 只看該作者
A General Existence Theorem for a Brakke Flow in Codimension One, some minor assumption, Brakke gave a proof of a time-global existence of rectifiable Brakke flow starting from the given data. When the initial data is an integral .-varifold, the obtained flow is also integral in the sense defined in Chap. ..
7#
發(fā)表于 2025-3-22 20:56:53 | 只看該作者
Allard Regularity Theory,ose that we have a varifold .?∈..(.) which happens to be a time-independent Brakke flow as we defined in Sect. .. This should mean that the normal velocity . is 0 and that .?=?. implies .?=?0, which means that .?is stationary. Let us adhere to the definition of the Brakke flow as in Definition . and check if this is indeed the case.
8#
發(fā)表于 2025-3-22 22:57:29 | 只看該作者
Yoshihiro TonegawaIs the first exposition of Brakke’s mean curvature flow, a subject that interests many researchers.Uses accessible language, not highly technical terminology, for all readers interested in geometric m
9#
發(fā)表于 2025-3-23 03:22:46 | 只看該作者
10#
發(fā)表于 2025-3-23 09:20:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 02:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
惠东县| 东城区| 札达县| 兴城市| 如皋市| 额济纳旗| 普定县| 饶河县| 芒康县| 五寨县| 南京市| 宜宾县| 屏山县| 洛阳市| 新巴尔虎左旗| 定远县| 日照市| 乌兰浩特市| 建平县| 子洲县| 抚州市| 阿鲁科尔沁旗| 皋兰县| 英超| 潮安县| 宜兰县| 襄汾县| 桂林市| 泊头市| 彝良县| 尤溪县| 天柱县| 石家庄市| 桃江县| 沙雅县| 滨州市| 旺苍县| 马公市| 松桃| 灵石县| 阿巴嘎旗|