找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; 6th International Wo Alessandro Crimi,Spyridon Bakas Conferen

[復(fù)制鏈接]
樓主: Corrugate
41#
發(fā)表于 2025-3-28 17:22:37 | 只看該作者
Automatic Segmentation of Non-tumor Tissues in Glioma MR Brain Images Using Deformable Registration ysicians. Pathological variability often renders difficulty to register a well-labeled normal atlas to such images and to automatic segment/label surrounding normal brain tissues. In this paper, we propose a new registration approach that first segments brain tumor using a U-Net and then simulates m
42#
發(fā)表于 2025-3-28 21:06:29 | 只看該作者
43#
發(fā)表于 2025-3-28 23:09:05 | 只看該作者
Volume Preserving Brain Lesion Segmentation brain lesion segmentation due to its accuracy and efficiency. CNNs are generally trained with loss functions that measure the segmentation accuracy, such as the cross entropy loss and Dice loss. However, lesion load is a crucial measurement for disease analysis, and these loss functions do not guar
44#
發(fā)表于 2025-3-29 05:46:28 | 只看該作者
Microstructural Modulations in the Hippocampus Allow to Characterizing Relapsing-Remitting Versus Prill unknown. The objective of this study was to evaluate morphometric and microstructural properties based on structural and diffusion magnetic resonance imaging (dMRI) data in these MS phenotypes, and verify if selective intra-pathological alterations characterise GM structures. Diffusion Tensor Im
45#
發(fā)表于 2025-3-29 08:13:11 | 只看該作者
Symmetric-Constrained Irregular Structure Inpainting for Brain MRI Registration with Tumor Pathologyor geometry through location alignment and facilitate pathological analysis. Since tumor region does not match with any ordinary brain tissue, it has been difficult to deformably register a patient’s brain to a normal one. Many patient images are associated with irregularly distributed lesions, resu
46#
發(fā)表于 2025-3-29 12:00:23 | 只看該作者
47#
發(fā)表于 2025-3-29 17:38:27 | 只看該作者
48#
發(fā)表于 2025-3-29 20:54:21 | 只看該作者
Spatio-Temporal Learning from Longitudinal Data for Multiple Sclerosis Lesion Segmentationze that the spatio-temporal cues in longitudinal data can aid the segmentation algorithm. Therefore, we propose a multi-task learning approach by defining an auxiliary self-supervised task of deformable registration between two time-points to guide the neural network toward learning from spatio-temp
49#
發(fā)表于 2025-3-30 02:01:14 | 只看該作者
50#
發(fā)表于 2025-3-30 07:43:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 09:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
威远县| 靖宇县| 湛江市| 静海县| 巫溪县| 滦平县| 朝阳县| 南陵县| 乌拉特前旗| 乡宁县| 武隆县| 辽中县| 巴南区| 松江区| 闽侯县| 江口县| 西畴县| 工布江达县| 洮南市| 长武县| 包头市| 抚松县| 阜城县| 凌云县| 洛川县| 眉山市| 武安市| 容城县| 连江县| 海城市| 正镶白旗| 甘肃省| 曲阳县| 屯门区| 鹤壁市| 德保县| 石门县| 汕尾市| 华坪县| 肇源县| 仙游县|