找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; 6th International Wo Alessandro Crimi,Spyridon Bakas Conferen

[復(fù)制鏈接]
樓主: Corrugate
21#
發(fā)表于 2025-3-25 03:42:23 | 只看該作者
Surbhi Dhingra,Juhi Yadav,Janesh Kumares in hippocampus, which was also significantly correlated to physical disability. Conversely, morphometric measurements did not reach any statistical significance. Our study emphasized the potential of dMRI, and in particular the importance of advanced models such as 3D-SHORE with respect to DTI in
22#
發(fā)表于 2025-3-25 08:02:44 | 只看該作者
23#
發(fā)表于 2025-3-25 15:41:21 | 只看該作者
Guimei Yu,Yunpeng Bai,Zhong-Yin Zhangariate methods are sufficient to address lesion-anatomical bias. This is a commonly encountered situation when working with public datasets, which very often lack general health data. We support our claim with a set of simulated experiments using a publicly available lesion imaging dataset, on which
24#
發(fā)表于 2025-3-25 16:37:57 | 只看該作者
Springer Series in Materials Sciencee-art 3D GAN with refinement training steps. In experiments using non-contrast computed tomography images from traumatic brain injury (TBI) patients, the model detects and localizes TBI abnormalities with an area under the ROC curve of .75.. Moreover, we test the potential of the method for detectin
25#
發(fā)表于 2025-3-25 21:57:33 | 只看該作者
Macromolecular Science and Engineeringe segmentation performance. Our results suggest that a network trained using curriculum learning is effective at compensating for different levels of motion artifacts, and improved the segmentation performance by .9%–15% (.) when compared against a conventional shuffled learning strategy on the same
26#
發(fā)表于 2025-3-26 02:02:34 | 只看該作者
27#
發(fā)表于 2025-3-26 06:39:48 | 只看該作者
28#
發(fā)表于 2025-3-26 10:18:26 | 只看該作者
29#
發(fā)表于 2025-3-26 14:32:25 | 只看該作者
Convolutional Neural Network with Asymmetric Encoding and Decoding Structure for Brain Vessel Segmeny to distinguish vessels from normal regions. What is more, to improve insufficient fine vessel segmentation caused by pixel-wise loss function, we develop a centerline loss to guide learning model to pay equal attention to small vessels and large vessels, so that the segmentation accuracy of small
30#
發(fā)表于 2025-3-26 17:47:57 | 只看該作者
Volume Preserving Brain Lesion Segmentationng loss so that the preservation of brain lesion volume is encouraged. For demonstration, the proposed method was applied to ischemic stroke lesion segmentation, and experimental results show that our method better preserves the volume of brain lesions and improves the segmentation accuracy.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 07:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
拜泉县| 册亨县| 罗源县| 佛坪县| 毕节市| 梓潼县| 紫金县| 天全县| 阿城市| 乡城县| 格尔木市| 枣强县| 保德县| 双峰县| 奎屯市| 湖州市| 海口市| 扎囊县| 舟曲县| 新民市| 界首市| 浦县| 堆龙德庆县| 武冈市| 甘泉县| 沙坪坝区| 河源市| 鲁甸县| 湖南省| 确山县| 宁都县| 晋江市| 三门县| 偏关县| 乌兰浩特市| 蚌埠市| 永春县| 南涧| 元朗区| 泸定县| 阿拉善左旗|