找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Braid Groups; Christian Kassel,Vladimir Turaev Textbook 2008 Springer-Verlag New York 2008 Burau.Garside.Homotopy.Iwahori-Hecke.Markov.Per

[復(fù)制鏈接]
樓主: indulge
21#
發(fā)表于 2025-3-25 06:50:49 | 只看該作者
22#
發(fā)表于 2025-3-25 10:34:07 | 只看該作者
,Lévy Processes and Their Characteristics,The principal aim of this chapter is to show that the braid groups have a natural total order.
23#
發(fā)表于 2025-3-25 14:14:53 | 只看該作者
24#
發(fā)表于 2025-3-25 18:30:17 | 只看該作者
,Other characterizations of the Lê cycles,We recall several basic notions from the theory of fibrations needed in the main text. For details, the reader is referred, for instance, to [FR84, Chap. 5].
25#
發(fā)表于 2025-3-25 22:14:28 | 只看該作者
Nucleins?uren – Struktur und FunktionWe briefly discuss a family of finite-dimensional quotients of the braid group algebras due to J. Murakami, J. Birman, and H. Wenzl. We also outline an interpretation of the Lawrence—Krammer—Bigelow representation of Section 3.5 in terms of representations of these algebras.
26#
發(fā)表于 2025-3-26 02:38:40 | 只看該作者
Hartmut Follmann,Peter C. HeinrichWe give here a brief introduction to so-called left self-distributive sets, which are closely related to braid groups.
27#
發(fā)表于 2025-3-26 08:15:27 | 只看該作者
28#
發(fā)表于 2025-3-26 10:01:34 | 只看該作者
29#
發(fā)表于 2025-3-26 12:37:46 | 只看該作者
An Order on the Braid Groups,The principal aim of this chapter is to show that the braid groups have a natural total order.
30#
發(fā)表于 2025-3-26 18:15:37 | 只看該作者
Presentations of SL2(Z) and PSL2(Z),Let . be the group of . matrices with entries in . and with determinant 1. The center of . is the group of order 2 generated by the scalar matrix ., where .. is the unit matrix. The quotient group.is called the modular group; it can be identified with the group of rational functions on . of the form ., where ., ., ., . are integers such that ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
商城县| 广宁县| 宁远县| 巴彦淖尔市| 乐陵市| 高雄县| 东丰县| 油尖旺区| 镇江市| 铜陵市| 合水县| 浙江省| 于田县| 许昌县| 东丽区| 宣恩县| 徐汇区| 德格县| 嘉祥县| 图木舒克市| 黄平县| 盘锦市| 临沭县| 息烽县| 新邵县| 宝鸡市| 依安县| 横峰县| 壤塘县| 正镶白旗| 溆浦县| 喀什市| 卢龙县| 静乐县| 肇东市| 昌乐县| 本溪市| 鹰潭市| 炎陵县| 师宗县| 丘北县|