找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Braid Groups; Christian Kassel,Vladimir Turaev Textbook 2008 Springer-Verlag New York 2008 Burau.Garside.Homotopy.Iwahori-Hecke.Markov.Per

[復(fù)制鏈接]
查看: 55604|回復(fù): 44
樓主
發(fā)表于 2025-3-21 17:59:47 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Braid Groups
影響因子2023Christian Kassel,Vladimir Turaev
視頻videohttp://file.papertrans.cn/191/190121/190121.mp4
發(fā)行地址Introduces the theory of braids and braid groups.Discusses recent developments in the field dealing with the linearity and orderability of braid groups.Excellent presentation.Includes numerous problem
學(xué)科分類Graduate Texts in Mathematics
圖書封面Titlebook: Braid Groups;  Christian Kassel,Vladimir Turaev Textbook 2008 Springer-Verlag New York 2008 Burau.Garside.Homotopy.Iwahori-Hecke.Markov.Per
影響因子.Braids and braid groups, the focus of this text, have been at the heart of important mathematical developments over the last two decades. Their association with permutations has led to their presence in a number of mathematical fields and physics. As central objects in knot theory and 3-dimensional topology, braid groups has led to the creation of a new field called quantum topology...In this well-written presentation, motivated by numerous examples and problems, the authors introduce the basic theory of braid groups, highlighting several definitions that show their equivalence; this is followed by a treatment of the relationship between braids, knots and links. Important results then treat the linearity and orderability of the subject. Relevant additional material is included in five large appendices...Braid Groups. will serve graduate students and a number of mathematicians coming from diverse disciplines..
Pindex Textbook 2008
The information of publication is updating

書目名稱Braid Groups影響因子(影響力)




書目名稱Braid Groups影響因子(影響力)學(xué)科排名




書目名稱Braid Groups網(wǎng)絡(luò)公開度




書目名稱Braid Groups網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Braid Groups被引頻次




書目名稱Braid Groups被引頻次學(xué)科排名




書目名稱Braid Groups年度引用




書目名稱Braid Groups年度引用學(xué)科排名




書目名稱Braid Groups讀者反饋




書目名稱Braid Groups讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:15:27 | 只看該作者
,Symmetric Groups and Iwahori–Hecke Algebras,algebra of .. depending on two parameters . and .. Our interest in the Iwahori—Hecke algebras is due to their connections to braids and links and to their beautiful representation theory discussed in the next chapter.
板凳
發(fā)表于 2025-3-22 00:49:31 | 只看該作者
地板
發(fā)表于 2025-3-22 07:02:36 | 只看該作者
Garside Monoids and Braid Monoids,oids. In this chapter we investigate properties of monoids and specifically of Garside monoids. As an application, we give a solution of the conjugacy problem in the braid groups. We also discuss generalized braid groups associated with Coxeter matrices.
5#
發(fā)表于 2025-3-22 11:55:39 | 只看該作者
6#
發(fā)表于 2025-3-22 16:46:28 | 只看該作者
0072-5285 raid groups.Excellent presentation.Includes numerous problem.Braids and braid groups, the focus of this text, have been at the heart of important mathematical developments over the last two decades. Their association with permutations has led to their presence in a number of mathematical fields and
7#
發(fā)表于 2025-3-22 17:31:57 | 只看該作者
Homological Representations of the Braid Groups,f the Burau representation, we construct in Section 3.3 the one-variable Alexander–Conway polynomial of links in ... As an application of the Lawrence–Krammer–Bigelow representation, we establish the linearity of .. for all . (Section 3.5.4).
8#
發(fā)表于 2025-3-22 22:59:04 | 只看該作者
Fluctuation Theory for Lévy Processesf the Burau representation, we construct in Section 3.3 the one-variable Alexander–Conway polynomial of links in ... As an application of the Lawrence–Krammer–Bigelow representation, we establish the linearity of .. for all . (Section 3.5.4).
9#
發(fā)表于 2025-3-23 02:17:43 | 只看該作者
10#
發(fā)表于 2025-3-23 09:03:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海兴县| 青浦区| 绵竹市| 东海县| 曲周县| 三门县| 铜梁县| 镇康县| 平塘县| 阿图什市| 北安市| 台安县| 忻州市| 会同县| 滕州市| 峨山| 奉化市| 宁陵县| 常宁市| 闽清县| 搜索| 定日县| 武冈市| 保德县| 将乐县| 清镇市| 准格尔旗| 德保县| 玛纳斯县| 肃南| 灯塔市| 会泽县| 海晏县| 元朗区| 清河县| 红河县| 巫溪县| 崇阳县| 龙川县| 湘潭市| 手游|