找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boundary Elements XIII; C. A. Brebbia,G. S. Gipson Book 1991 Computational Mechanics Publications 1991 Finite-Elemente-Methode.Rotor.Simul

[復制鏈接]
樓主: FORGE
21#
發(fā)表于 2025-3-25 06:55:01 | 只看該作者
22#
發(fā)表于 2025-3-25 09:20:30 | 只看該作者
23#
發(fā)表于 2025-3-25 12:07:15 | 只看該作者
24#
發(fā)表于 2025-3-25 19:27:15 | 只看該作者
On Using the Delta-Trigonometric Method to Solve the 2-D Neumann Potential Problemion of the second kind. We propose to solve this integral equation using a Petrov-Galerkin method with trigonometric polynomials as test functions, and a span of delta distributions centered at the boundary points as trial functions. For the exterior boundary value problem, the approximate potential
25#
發(fā)表于 2025-3-25 22:07:29 | 只看該作者
26#
發(fā)表于 2025-3-26 02:38:10 | 只看該作者
27#
發(fā)表于 2025-3-26 05:10:07 | 只看該作者
A Study of Flow Structures in a Cavity due to Double-Diffusive Natural Convection by Boundary Elemenand bottom walls. General time dependent results show the development of velocity, temperature and molar fraction fields. Boundary-domain integral method is used and the sub-domain technique combined with block-solver is employed to reduce computer requirements.
28#
發(fā)表于 2025-3-26 08:57:56 | 只看該作者
29#
發(fā)表于 2025-3-26 14:44:25 | 只看該作者
30#
發(fā)表于 2025-3-26 19:49:10 | 只看該作者
Explicit Forms of the Fundamental Solution Tensor and Singular Integrals for the 2D Primitive-Variabprimitive-variable Navier-Stokes boundary element formulation based on the method of Tosaka. Also, explicit forms of singular integrals are derived and presented. In this regard, series expansions of the fundamental solutions, which contain modified Bessel functions, are performed to enable integrat
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
台山市| 米泉市| 兴文县| 团风县| 应用必备| 本溪| 依兰县| 瑞金市| 托克逊县| 清丰县| 子长县| 三河市| 华安县| 庆云县| 天祝| 贺兰县| 凤山县| 宁城县| 若羌县| 花莲市| 嵩明县| 北流市| 连南| 孟津县| 清远市| 宝山区| 吉林市| 巴南区| 五寨县| 北流市| 腾冲县| 宁武县| 青浦区| 广饶县| 米易县| 丹凤县| 潞城市| 怀远县| 启东市| 广东省| 安阳市|