找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Boolean Algebras; Reihe: Reelle Funkti Roman Sikorski Book 19601st edition Springer-Verlag Berlin Heidelberg 1960 Boolescher Verband.Finite

[復(fù)制鏈接]
樓主: Enlightening
11#
發(fā)表于 2025-3-23 10:10:52 | 只看該作者
12#
發(fā)表于 2025-3-23 16:12:48 | 只看該作者
Book 19601st editionaic rings, or as a generalization of the set-theoretical notion of field of sets. Fundamental theorems in the both directions are due to M. H. STONE whose papers have opened a new period in the development of the theory. This work treats of the set-theoretical aspect, the algebraic one being scarcel
13#
發(fā)表于 2025-3-23 20:48:41 | 只看該作者
14#
發(fā)表于 2025-3-23 22:55:17 | 只看該作者
15#
發(fā)表于 2025-3-24 03:28:26 | 只看該作者
Finite joins and meets,by . and called the . of .. The operations ∪, ∩, — are characterized by a set of axioms assuring that these operations have properties analogoues to those of union, intersection and complementation of sets respectively. Many equivalent sets of axioms characterizing ∪, ∩, — are known.. We assume here the following one.:
16#
發(fā)表于 2025-3-24 07:32:37 | 只看該作者
Terminology and notation,eet. They hold also for the symbols “ . ” and “ . ” of the corresponding infinite operations (see also notation on p. 50–51 for infinite Boolean joins and meets) and for the symbol “—” of complementation and the symbol “ ? ” of inclusion.
17#
發(fā)表于 2025-3-24 13:14:58 | 只看該作者
of algebraic rings, or as a generalization of the set-theoretical notion of field of sets. Fundamental theorems in the both directions are due to M. H. STONE whose papers have opened a new period in the development of the theory. This work treats of the set-theoretical aspect, the algebraic one bei
18#
發(fā)表于 2025-3-24 16:14:16 | 只看該作者
6樓
19#
發(fā)表于 2025-3-24 21:08:01 | 只看該作者
6樓
20#
發(fā)表于 2025-3-24 23:23:26 | 只看該作者
6樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 17:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贡山| 盐池县| 丹寨县| 沁源县| 祥云县| 普兰县| 宁城县| 新竹市| 屏东县| 霍山县| 凯里市| 桃园县| 志丹县| 广河县| 琼海市| 招远市| 班戈县| 修水县| 鞍山市| 郴州市| 天全县| 明溪县| 宁蒗| 鹤壁市| 昌江| 龙胜| 海林市| 汤原县| 祁连县| 内乡县| 荆门市| 珠海市| 孟州市| 万山特区| 吴江市| 宜川县| 承德县| 巩义市| 曲阳县| 桦南县| 门头沟区|