找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boolean Algebras; Reihe: Reelle Funkti Roman Sikorski Book 19601st edition Springer-Verlag Berlin Heidelberg 1960 Boolescher Verband.Finite

[復(fù)制鏈接]
查看: 8664|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:05:42 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Boolean Algebras
期刊簡稱Reihe: Reelle Funkti
影響因子2023Roman Sikorski
視頻videohttp://file.papertrans.cn/190/189772/189772.mp4
學(xué)科分類Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge
圖書封面Titlebook: Boolean Algebras; Reihe: Reelle Funkti Roman Sikorski Book 19601st edition Springer-Verlag Berlin Heidelberg 1960 Boolescher Verband.Finite
影響因子There are two aspects in the theory of Boolean algebras: algebraic and set-theoretical. Boolean algebras can be considered as a special kind of algebraic rings, or as a generalization of the set-theoretical notion of field of sets. Fundamental theorems in the both directions are due to M. H. STONE whose papers have opened a new period in the development of the theory. This work treats of the set-theoretical aspect, the algebraic one being scarcely mentioned. The book is composed of two Chapters and an Appendix. Chapter I is devoted to the study of Boolean algebras from the point of view of finite Boolean operations only. A greater part of its contents can be found also in the books of BIRKHOFF [2J and HERMES [1 J. Chapter II seems to be the first systematic study of Boolean algebras with infinite Boolean operations. To understand Chapters land II it suffices to know only fundamental notions from General Set Theory and Set-theoretical Topology. No knowledge of Lattice Theory or AbstractAlgebra is supposed. Less known topological theorems are recalled. Only a few examples use more advanced topological means but they can be omitted. All theorems in both Chapters are given with full pr
Pindex Book 19601st edition
The information of publication is updating

書目名稱Boolean Algebras影響因子(影響力)




書目名稱Boolean Algebras影響因子(影響力)學(xué)科排名




書目名稱Boolean Algebras網(wǎng)絡(luò)公開度




書目名稱Boolean Algebras網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Boolean Algebras被引頻次




書目名稱Boolean Algebras被引頻次學(xué)科排名




書目名稱Boolean Algebras年度引用




書目名稱Boolean Algebras年度引用學(xué)科排名




書目名稱Boolean Algebras讀者反饋




書目名稱Boolean Algebras讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:46:11 | 只看該作者
Infinite joins and meets,Let A., . . . ,.. be elements of a Boolean algebra A. The finite join .is the least element containing all elements .., . . . ,.. i. e. it is characterized uniquely by the following two conditions:
板凳
發(fā)表于 2025-3-22 02:45:59 | 只看該作者
地板
發(fā)表于 2025-3-22 07:20:25 | 只看該作者
https://doi.org/10.1007/b119172 properties as the set-theoretical union, intersection and complementation of subsets of a fixed space. Since the elements of A have many properties of sets, we shall denote them by capital letters .,... used generally to denote sets. For arbitrary elements . ∈ A, . ∪ . and . ∩ . are elements in A,
5#
發(fā)表于 2025-3-22 09:33:53 | 只看該作者
Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folgehttp://image.papertrans.cn/b/image/189772.jpg
6#
發(fā)表于 2025-3-22 16:14:53 | 只看該作者
https://doi.org/10.1007/978-3-662-01492-9Boolescher Verband; Finite; Mathematica; Morphism; algebra; calculus; function; logic; mathematics; proof; set
7#
發(fā)表于 2025-3-22 18:36:51 | 只看該作者
8#
發(fā)表于 2025-3-23 01:15:06 | 只看該作者
9#
發(fā)表于 2025-3-23 04:49:34 | 只看該作者
10#
發(fā)表于 2025-3-23 05:45:17 | 只看該作者
Book 19601st editionons from General Set Theory and Set-theoretical Topology. No knowledge of Lattice Theory or AbstractAlgebra is supposed. Less known topological theorems are recalled. Only a few examples use more advanced topological means but they can be omitted. All theorems in both Chapters are given with full pr
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 17:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南城县| 新竹县| 五家渠市| 双桥区| 西充县| 读书| 井研县| 财经| 静乐县| 都昌县| 团风县| 囊谦县| 昌黎县| 顺平县| 屏东县| 南平市| 瑞金市| 洮南市| 肇州县| 福海县| 九龙城区| 昌平区| 五家渠市| 沁阳市| 珲春市| 石景山区| 安丘市| 台湾省| 奉化市| 潞城市| 濮阳市| 武宣县| 伊金霍洛旗| 蓬溪县| 兴隆县| 平谷区| 军事| 扎兰屯市| 福建省| 南昌市| 常宁市|