找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Blocks of Finite Groups and Their Invariants; Benjamin Sambale Book 2014 Springer International Publishing Switzerland 2014 20C15,20C20,20

[復(fù)制鏈接]
樓主: 大口水罐
41#
發(fā)表于 2025-3-28 18:40:29 | 只看該作者
Dirk Schulze-Makuch,Louis N. Irwinis available. Most results are stated in terms of Cartan invariants of subsections. We also provide a practical algorithm for computing Cartan invariants up to basic sets. This algorithm will be used in the following chapters.
42#
發(fā)表于 2025-3-28 22:47:11 | 只看該作者
J. Rivera Islas,J. C. Micheau,T. Buhseonly. Most importantly, we introduce Fong’s reductions. In the second part we recall the classification of the finite simple groups and note some well-known results about representation theory of simple groups. Finally, we consider the .-solvable case.
43#
發(fā)表于 2025-3-29 00:18:48 | 只看該作者
44#
發(fā)表于 2025-3-29 04:19:30 | 只看該作者
45#
發(fā)表于 2025-3-29 07:54:21 | 只看該作者
The Origin of Biogenic Elementsups. In this chapter we classify all saturated fusion systems on bicyclic groups. For odd primes, every bicyclic group is metacyclic and the classification is due to Stancu. In case .?=?2 the classification is very delicate. As an application we verify Olsson’s Conjecture for blocks with bicyclic de
46#
發(fā)表于 2025-3-29 12:24:03 | 只看該作者
47#
發(fā)表于 2025-3-29 16:49:31 | 只看該作者
48#
發(fā)表于 2025-3-29 20:32:19 | 只看該作者
49#
發(fā)表于 2025-3-30 03:10:18 | 只看該作者
Robert S. Mulliken,Bernard J. Ransil M.D.nd for blocks with abelian defect groups. The proof uses results about regular orbits under coprime actions. Moreover, we show that Brauer’s .(.)-Conjecture holds for blocks with abelian defect groups if the inertial index is less than 256.
50#
發(fā)表于 2025-3-30 05:09:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 08:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
左云县| 南昌市| 梓潼县| 惠东县| 呼玛县| 浦城县| 即墨市| 翁源县| 江津市| 广元市| 郑州市| 竹溪县| 上蔡县| 茶陵县| 张家港市| 枣强县| 深州市| 黄大仙区| 永宁县| 仪陇县| 三明市| 台北县| 武冈市| 错那县| 青冈县| 巫溪县| 石城县| 太白县| 长宁区| 边坝县| 南安市| 柘城县| 额敏县| 江都市| 抚州市| 松溪县| 托克托县| 沭阳县| 阳城县| 柳江县| 马关县|