找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Blocks of Finite Groups and Their Invariants; Benjamin Sambale Book 2014 Springer International Publishing Switzerland 2014 20C15,20C20,20

[復(fù)制鏈接]
樓主: 大口水罐
21#
發(fā)表于 2025-3-25 06:12:44 | 只看該作者
Schulze-Makuch Dirk,Louis N. IrwinBy refining the methods of the previous chapter, we obtain another bound for the number of characters in a block of a finite group. This time the fusion system of the block will play an essential role. The statement of the result differs in case .?=?2 from the odd case.
22#
發(fā)表于 2025-3-25 11:05:22 | 只看該作者
An Overview of Cosmic EvolutionAfter proving a strong version of Alperin’s Fusion Theorem, we derived some properties of essential subgroups in fusion systems. By using the classification of the strongly .-embedded subgroups we restrictions on the automorphism groups of essential subgroups. This leads to consequences in small cases.
23#
發(fā)表于 2025-3-25 12:35:56 | 只看該作者
Open ConjecturesWe introduce a list of open conjectures about block theory of finite groups. The first of these conjectures was proposed in 1954 by Brauer, and the last one of our list is a conjecture by Gluck from 2011. It also includes famous conjectures by Olsson, Alperin, McKay and others. All of these conjectures will be considered in the following chapters.
24#
發(fā)表于 2025-3-25 16:18:47 | 只看該作者
Quadratic FormsWe introduce a quadratic form arising from the Cartan matrix of a block of a finite group. By invoking Brauer’s notion of basic sets, we exploit some properties of the quadratic form with will lead to restriction on the number of characters of the block. We also discuss a question about the indecomposability of Cartan matrices.
25#
發(fā)表于 2025-3-25 22:11:11 | 只看該作者
A Bound in Terms of Fusion SystemsBy refining the methods of the previous chapter, we obtain another bound for the number of characters in a block of a finite group. This time the fusion system of the block will play an essential role. The statement of the result differs in case .?=?2 from the odd case.
26#
發(fā)表于 2025-3-26 04:03:12 | 只看該作者
27#
發(fā)表于 2025-3-26 04:37:55 | 只看該作者
Blocks of Finite Groups and Their Invariants978-3-319-12006-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
28#
發(fā)表于 2025-3-26 09:27:29 | 只看該作者
Marie-Pierre Callait,Dominique Gauthier of groups algebras, (lower) defect groups, the Brauer homomorphism, decomposition numbers, subsections, and fusion systems. Moreover, we present Brauer’s three main theorems as well as a few other important results. Most theorems are given without proof.
29#
發(fā)表于 2025-3-26 13:26:19 | 只看該作者
30#
發(fā)表于 2025-3-26 16:55:04 | 只看該作者
J. Rivera Islas,J. C. Micheau,T. Buhseonly. Most importantly, we introduce Fong’s reductions. In the second part we recall the classification of the finite simple groups and note some well-known results about representation theory of simple groups. Finally, we consider the .-solvable case.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 08:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临汾市| 峨眉山市| 澎湖县| 日喀则市| 南陵县| 托里县| 鄯善县| 新乡县| 丹凤县| 巢湖市| 沙坪坝区| 新巴尔虎左旗| 城市| 连云港市| 祥云县| 蒙自县| 乐至县| 西贡区| 皋兰县| 彭山县| 林州市| 牡丹江市| 闽清县| 安新县| 鞍山市| 米脂县| 恩平市| 定安县| 梓潼县| 金阳县| 绥化市| 正定县| 嘉鱼县| 都匀市| 樟树市| 富宁县| 荃湾区| 普兰店市| 三门峡市| 达日县| 二连浩特市|