找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Blind Source Separation; Advances in Theory, Ganesh R. Naik,Wenwu Wang Book 2014 Springer-Verlag Berlin Heidelberg 2014 Blind Source Separ

[復(fù)制鏈接]
樓主: TIBIA
41#
發(fā)表于 2025-3-28 18:11:22 | 只看該作者
Subband-Based Blind Source Separation and Permutation Alignmenticular with a focus on the inherent permutation alignment problem associated with this approach, and bring attention to the most recent developments in this area, including the joint BSS approach in solving the convolutive mixing problem.
42#
發(fā)表于 2025-3-28 20:50:32 | 只看該作者
Ganesh R. Naik,Wenwu WangCovers the latest cutting edge topics on BSS and emphasis on the open problems.Present both theory and applications with examples.Offers unique in-depth analysis of BSS/ICA topics.Includes most advanc
43#
發(fā)表于 2025-3-28 23:19:15 | 只看該作者
Signals and Communication Technologyhttp://image.papertrans.cn/b/image/189150.jpg
44#
發(fā)表于 2025-3-29 04:36:49 | 只看該作者
45#
發(fā)表于 2025-3-29 09:10:29 | 只看該作者
https://doi.org/10.1007/978-3-662-59691-3urce separation problem. For the proof of concepts, the focus is on the scenario where the number of mixtures is not less than that of the sources. Based on the assumption that the sources are sparsely represented by some dictionaries, we present a joint source separation and dictionary learning alg
46#
發(fā)表于 2025-3-29 11:43:21 | 只看該作者
47#
發(fā)表于 2025-3-29 16:39:23 | 只看該作者
https://doi.org/10.1007/978-3-662-59691-3icular with a focus on the inherent permutation alignment problem associated with this approach, and bring attention to the most recent developments in this area, including the joint BSS approach in solving the convolutive mixing problem.
48#
發(fā)表于 2025-3-29 21:02:27 | 只看該作者
https://doi.org/10.1007/978-3-662-59691-3erent source vectors during the source separation process. It can theoretically avoid the permutation problem inherent to independent component analysis (ICA). The dependency in each source vector is maintained by adopting a multivariate source prior instead of a univariate source prior. In this cha
49#
發(fā)表于 2025-3-30 00:47:57 | 只看該作者
Das neue Profil des Top-Managers set of unknown source data (one-dimensional signals, images, ...) from observed mixtures of these data, while the mixing operator has unknown parameter values. The second task is Blind Mixture Identification (BMI), which aims at estimating these unknown parameter values of the mixing operator. We p
50#
發(fā)表于 2025-3-30 04:33:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平和县| 武定县| 星座| 浦北县| 虎林市| 曲水县| 潜山县| 青浦区| 阿城市| 井冈山市| 宁阳县| 阳信县| 蒙城县| 宝清县| 洛南县| 德庆县| 石首市| 晋江市| 阿尔山市| 娱乐| 肥城市| 五台县| 鄄城县| 隆子县| 宜黄县| 斗六市| 小金县| 鸡泽县| 大余县| 那曲县| 炉霍县| 巩留县| 龙井市| 阳信县| 清新县| 威宁| 贺兰县| 泗洪县| 奉新县| 濉溪县| 牡丹江市|