找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Blind Source Separation; Advances in Theory, Ganesh R. Naik,Wenwu Wang Book 2014 Springer-Verlag Berlin Heidelberg 2014 Blind Source Separ

[復(fù)制鏈接]
查看: 53952|回復(fù): 61
樓主
發(fā)表于 2025-3-21 16:31:40 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Blind Source Separation
期刊簡稱Advances in Theory,
影響因子2023Ganesh R. Naik,Wenwu Wang
視頻videohttp://file.papertrans.cn/190/189150/189150.mp4
發(fā)行地址Covers the latest cutting edge topics on BSS and emphasis on the open problems.Present both theory and applications with examples.Offers unique in-depth analysis of BSS/ICA topics.Includes most advanc
學(xué)科分類Signals and Communication Technology
圖書封面Titlebook: Blind Source Separation; Advances in Theory,  Ganesh R. Naik,Wenwu Wang Book 2014 Springer-Verlag Berlin Heidelberg 2014 Blind Source Separ
影響因子.Blind Source Separation. intends to report the new results of the efforts on the study of Blind Source Separation (BSS). The book collects novel research ideas and some training in BSS, independent component analysis (ICA), artificial intelligence and signal processing applications. Furthermore, the research results previously scattered in many journals and conferences worldwide are methodically edited and presented in a unified form. The book is likely to be of interest to university researchers, R&D engineers and graduate students in computer science and electronics who wish to learn the core principles, methods, algorithms and applications of BSS. .Dr. .Ganesh R. Naik. works at University of Technology, Sydney, Australia; Dr. .Wenwu Wang. works at University of Surrey, UK..
Pindex Book 2014
The information of publication is updating

書目名稱Blind Source Separation影響因子(影響力)




書目名稱Blind Source Separation影響因子(影響力)學(xué)科排名




書目名稱Blind Source Separation網(wǎng)絡(luò)公開度




書目名稱Blind Source Separation網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Blind Source Separation被引頻次




書目名稱Blind Source Separation被引頻次學(xué)科排名




書目名稱Blind Source Separation年度引用




書目名稱Blind Source Separation年度引用學(xué)科排名




書目名稱Blind Source Separation讀者反饋




書目名稱Blind Source Separation讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:11:21 | 只看該作者
Blind Source Separation Based on Dictionary Learning: A Singularity-Aware Approachurce separation problem. For the proof of concepts, the focus is on the scenario where the number of mixtures is not less than that of the sources. Based on the assumption that the sources are sparsely represented by some dictionaries, we present a joint source separation and dictionary learning alg
板凳
發(fā)表于 2025-3-22 02:30:06 | 只看該作者
Performance Study for Complex Independent Component Analysisblind source separation, ICA is used to separate linear instantaneous mixtures of source signals into signals that are as close as possible to the original signals. In the estimation of the so-called demixing matrix one has to distinguish two different factors:. This chapter studies both factors for
地板
發(fā)表于 2025-3-22 07:14:47 | 只看該作者
Subband-Based Blind Source Separation and Permutation Alignmenticular with a focus on the inherent permutation alignment problem associated with this approach, and bring attention to the most recent developments in this area, including the joint BSS approach in solving the convolutive mixing problem.
5#
發(fā)表于 2025-3-22 11:52:29 | 只看該作者
6#
發(fā)表于 2025-3-22 14:51:45 | 只看該作者
Sparse Component Analysis: A General Framework for Linear and Nonlinear Blind Source Separation and set of unknown source data (one-dimensional signals, images, ...) from observed mixtures of these data, while the mixing operator has unknown parameter values. The second task is Blind Mixture Identification (BMI), which aims at estimating these unknown parameter values of the mixing operator. We p
7#
發(fā)表于 2025-3-22 20:12:24 | 只看該作者
8#
發(fā)表于 2025-3-23 00:31:24 | 只看該作者
Itakura-Saito Nonnegative Matrix Two-Dimensional Factorizations for Blind Single Channel Audio Separ based on nonuniform time-frequency (TF) analysis and feature extraction. Unlike conventional researches that concentrate on the use of spectrogram or its variants, we develop our separation algorithms using an alternative TF representation based on the gammatone filterbank. In particular, we show t
9#
發(fā)表于 2025-3-23 02:30:27 | 只看該作者
10#
發(fā)表于 2025-3-23 05:59:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 17:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阜阳市| 嘉禾县| 岑巩县| 曲沃县| 神池县| 晋江市| 河池市| 泽库县| 屏山县| 新化县| 伊金霍洛旗| 西盟| 土默特左旗| 兴城市| 四子王旗| 华亭县| 怀柔区| 凌云县| 淮安市| 玉屏| 铜梁县| 武城县| 来安县| 于田县| 仪陇县| 台安县| 阿拉尔市| 驻马店市| 介休市| 蓬溪县| 饶阳县| 吉安县| 德令哈市| 江永县| 建始县| 疏附县| 花莲县| 安新县| 饶阳县| 工布江达县| 汤原县|