找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Black Hole Information and Thermodynamics; Dieter Lüst,Ward Vleeshouwers Book 2019 The Author(s), under exclusive license to Springer Natu

[復制鏈接]
樓主: fundoplication
21#
發(fā)表于 2025-3-25 07:15:49 | 只看該作者
https://doi.org/10.1007/978-3-642-91095-1During last lecture, we discussed black hole thermodynamics and mechanics. The zero’th law states that surface gravity is constant over an event horizon. For our discussion of the first law we considered Komar quantities.
22#
發(fā)表于 2025-3-25 09:39:02 | 只看該作者
Carl Claus,Karl Grobben,Alfred KühnThe scalar field action is given by .. We promote the field . to an operator . with associated creation and annihilation operators, which we can then make time-dependent as
23#
發(fā)表于 2025-3-25 13:58:28 | 只看該作者
https://doi.org/10.1007/978-3-662-25446-2We express a quantum scalar field in Minkowski and Rindler space as
24#
發(fā)表于 2025-3-25 17:44:59 | 只看該作者
https://doi.org/10.1007/978-3-662-25446-2The results of the last few lectures can be summarized as follows
25#
發(fā)表于 2025-3-25 21:03:04 | 只看該作者
26#
發(fā)表于 2025-3-26 01:53:51 | 只看該作者
Riemannian Geometry,We consider (d+1)-dimensional . ., which are topological manifold that look locally like .. . can be covered by open sets ., ., where . is some indexing set. The . are then defined as bijective maps . with the requirement that, for ., the . . is .. The collection of all . is then called an ..
27#
發(fā)表于 2025-3-26 05:17:53 | 只看該作者
,Einstein’s Equations,The Christoffel connection is associated to a covariant derivative acting on tensors. In familiar gauge theories, the partial derivative is replaced by a covariant derivative as .. In general relativity, the covariant derivative acts as ., where . indicates that multiplication is tensorially non-trivial, see (.).
28#
發(fā)表于 2025-3-26 10:17:52 | 只看該作者
29#
發(fā)表于 2025-3-26 15:29:11 | 只看該作者
30#
發(fā)表于 2025-3-26 17:56:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 23:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
随州市| 织金县| 江陵县| 涞源县| 六枝特区| 沙坪坝区| 奉节县| 元谋县| 城口县| 江源县| 宜黄县| 常宁市| 仙游县| 长兴县| 新源县| 定兴县| 彰化县| 班戈县| 泰来县| 蕉岭县| 积石山| 平南县| 安吉县| 南宁市| 阜宁县| 乌鲁木齐市| 米泉市| 南漳县| 元朗区| 武鸣县| 吴旗县| 灵寿县| 普宁市| 泸西县| 札达县| 台东市| 长岭县| 阿尔山市| 天全县| 镶黄旗| 繁峙县|