找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Black Hole Information and Thermodynamics; Dieter Lüst,Ward Vleeshouwers Book 2019 The Author(s), under exclusive license to Springer Natu

[復(fù)制鏈接]
樓主: fundoplication
11#
發(fā)表于 2025-3-23 11:05:02 | 只看該作者
Mikroskopische Anatomie der Z?hnebe able to distinguish between gravitational and inertial acceleration by means of local experiments i.e. if the box is small enough no observer will be able to distinguish between these two types of acceleration.
12#
發(fā)表于 2025-3-23 17:18:01 | 只看該作者
13#
發(fā)表于 2025-3-23 21:57:50 | 只看該作者
14#
發(fā)表于 2025-3-23 23:39:48 | 只看該作者
15#
發(fā)表于 2025-3-24 04:29:13 | 只看該作者
978-3-030-10918-9The Author(s), under exclusive license to Springer Nature Switzerland AG 2019
16#
發(fā)表于 2025-3-24 07:15:44 | 只看該作者
Die Sinnesempfindungen in der Mundh?hleWe consider (d+1)-dimensional . ., which are topological manifold that look locally like .. . can be covered by open sets ., ., where . is some indexing set. The . are then defined as bijective maps . with the requirement that, for ., the . . is .. The collection of all . is then called an ..
17#
發(fā)表于 2025-3-24 12:44:03 | 只看該作者
Makroskopische Anatomie der Z?hneThe Christoffel connection is associated to a covariant derivative acting on tensors. In familiar gauge theories, the partial derivative is replaced by a covariant derivative as .. In general relativity, the covariant derivative acts as ., where . indicates that multiplication is tensorially non-trivial, see (.).
18#
發(fā)表于 2025-3-24 18:39:51 | 只看該作者
https://doi.org/10.1007/978-3-0348-7071-9Typical space-time metrics, e.g. . or Schwarzschild space, are infinite in coordinate extension. This means that there are boundaries of our space-time at infinite coordinate distance in this coordinate system. To make such space-times more manageable we perform so-called ., which is a transformation of our original coordinate system such that:
19#
發(fā)表于 2025-3-24 22:27:36 | 只看該作者
20#
發(fā)表于 2025-3-25 00:53:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 07:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵宝市| 滨州市| 尼玛县| 彭泽县| 石景山区| 辉南县| 莱芜市| 葫芦岛市| 无极县| 龙胜| 华坪县| 灵宝市| 古浪县| 肇州县| 凤翔县| 郴州市| 太原市| 荆门市| 东乌珠穆沁旗| 澄迈县| 泗阳县| 班戈县| 顺义区| 闽侯县| 台中市| 牡丹江市| 平利县| 呼玛县| 梓潼县| 浑源县| 清流县| 台山市| 毕节市| 满城县| 寻乌县| 常山县| 聊城市| 余干县| 县级市| 闽侯县| 昌乐县|