找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Black Hole Information and Thermodynamics; Dieter Lüst,Ward Vleeshouwers Book 2019 The Author(s), under exclusive license to Springer Natu

[復(fù)制鏈接]
樓主: fundoplication
11#
發(fā)表于 2025-3-23 11:05:02 | 只看該作者
Mikroskopische Anatomie der Z?hnebe able to distinguish between gravitational and inertial acceleration by means of local experiments i.e. if the box is small enough no observer will be able to distinguish between these two types of acceleration.
12#
發(fā)表于 2025-3-23 17:18:01 | 只看該作者
13#
發(fā)表于 2025-3-23 21:57:50 | 只看該作者
14#
發(fā)表于 2025-3-23 23:39:48 | 只看該作者
15#
發(fā)表于 2025-3-24 04:29:13 | 只看該作者
978-3-030-10918-9The Author(s), under exclusive license to Springer Nature Switzerland AG 2019
16#
發(fā)表于 2025-3-24 07:15:44 | 只看該作者
Die Sinnesempfindungen in der Mundh?hleWe consider (d+1)-dimensional . ., which are topological manifold that look locally like .. . can be covered by open sets ., ., where . is some indexing set. The . are then defined as bijective maps . with the requirement that, for ., the . . is .. The collection of all . is then called an ..
17#
發(fā)表于 2025-3-24 12:44:03 | 只看該作者
Makroskopische Anatomie der Z?hneThe Christoffel connection is associated to a covariant derivative acting on tensors. In familiar gauge theories, the partial derivative is replaced by a covariant derivative as .. In general relativity, the covariant derivative acts as ., where . indicates that multiplication is tensorially non-trivial, see (.).
18#
發(fā)表于 2025-3-24 18:39:51 | 只看該作者
https://doi.org/10.1007/978-3-0348-7071-9Typical space-time metrics, e.g. . or Schwarzschild space, are infinite in coordinate extension. This means that there are boundaries of our space-time at infinite coordinate distance in this coordinate system. To make such space-times more manageable we perform so-called ., which is a transformation of our original coordinate system such that:
19#
發(fā)表于 2025-3-24 22:27:36 | 只看該作者
20#
發(fā)表于 2025-3-25 00:53:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 07:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿拉善左旗| 志丹县| 九龙坡区| 万年县| 芦溪县| 八宿县| 南城县| 屏山县| 奈曼旗| 重庆市| 栾城县| 双城市| 新绛县| 永济市| 舟曲县| 景宁| 宁陕县| 榕江县| 河源市| 许昌县| 临泉县| 瓦房店市| 马鞍山市| 定州市| 合江县| 乐平市| 英吉沙县| 鹤庆县| 谷城县| 中阳县| 贡觉县| 天祝| 高青县| 布拖县| 化德县| 饶阳县| 闵行区| 闸北区| 汪清县| 大宁县| 闸北区|