找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Black Hole Information and Thermodynamics; Dieter Lüst,Ward Vleeshouwers Book 2019 The Author(s), under exclusive license to Springer Natu

[復(fù)制鏈接]
樓主: fundoplication
11#
發(fā)表于 2025-3-23 11:05:02 | 只看該作者
Mikroskopische Anatomie der Z?hnebe able to distinguish between gravitational and inertial acceleration by means of local experiments i.e. if the box is small enough no observer will be able to distinguish between these two types of acceleration.
12#
發(fā)表于 2025-3-23 17:18:01 | 只看該作者
13#
發(fā)表于 2025-3-23 21:57:50 | 只看該作者
14#
發(fā)表于 2025-3-23 23:39:48 | 只看該作者
15#
發(fā)表于 2025-3-24 04:29:13 | 只看該作者
978-3-030-10918-9The Author(s), under exclusive license to Springer Nature Switzerland AG 2019
16#
發(fā)表于 2025-3-24 07:15:44 | 只看該作者
Die Sinnesempfindungen in der Mundh?hleWe consider (d+1)-dimensional . ., which are topological manifold that look locally like .. . can be covered by open sets ., ., where . is some indexing set. The . are then defined as bijective maps . with the requirement that, for ., the . . is .. The collection of all . is then called an ..
17#
發(fā)表于 2025-3-24 12:44:03 | 只看該作者
Makroskopische Anatomie der Z?hneThe Christoffel connection is associated to a covariant derivative acting on tensors. In familiar gauge theories, the partial derivative is replaced by a covariant derivative as .. In general relativity, the covariant derivative acts as ., where . indicates that multiplication is tensorially non-trivial, see (.).
18#
發(fā)表于 2025-3-24 18:39:51 | 只看該作者
https://doi.org/10.1007/978-3-0348-7071-9Typical space-time metrics, e.g. . or Schwarzschild space, are infinite in coordinate extension. This means that there are boundaries of our space-time at infinite coordinate distance in this coordinate system. To make such space-times more manageable we perform so-called ., which is a transformation of our original coordinate system such that:
19#
發(fā)表于 2025-3-24 22:27:36 | 只看該作者
20#
發(fā)表于 2025-3-25 00:53:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 19:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
牟定县| 柘城县| 松滋市| 威信县| 清河县| 台江县| 眉山市| 奉贤区| 抚远县| 肃宁县| 荥经县| 马鞍山市| 阿拉善盟| 金秀| 通州区| 尉犁县| 乐陵市| 奎屯市| 铜梁县| 沁阳市| 四平市| 泸州市| 天柱县| 鄢陵县| 皋兰县| 丰原市| 乌鲁木齐县| 禄劝| 夏邑县| 县级市| 鹤壁市| 西宁市| 鸡西市| 修武县| 赣州市| 杭锦旗| 呼伦贝尔市| 阳春市| 新和县| 海晏县| 苍南县|