找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Birational Geometry, K?hler–Einstein Metrics and Degenerations; Moscow, Shanghai and Ivan Cheltsov,Xiuxiong Chen,Jihun Park Conference proc

[復(fù)制鏈接]
樓主: 烈酒
61#
發(fā)表于 2025-4-1 05:55:02 | 只看該作者
62#
發(fā)表于 2025-4-1 07:33:55 | 只看該作者
Das Recht auf pers?nliche Freiheitiary types of duality: on one side, symplectic duality between . and a crepant resolution of the . singularity; on the other side, toric duality between two types of isolated quotient singularities. We give a correspondence between Lagrangian submanifolds of a cotangent bundle and vector bundles on
63#
發(fā)表于 2025-4-1 12:30:16 | 只看該作者
Testung, Trainierbarkeit und Rehabilitation,y metrics developed therein to provide a generalisation to the singular case of the result originally obtained by X. W.?Wang for the smooth case, which states that the existence of balanced metrics is equivalent to the Gieseker stability of the vector bundle. We also prove that the Bergman 1-paramet
64#
發(fā)表于 2025-4-1 16:40:22 | 只看該作者
https://doi.org/10.1007/978-3-8348-9692-6Lagrangians in K?hler–Einstein manifolds or more generally .-minimal Lagrangians introduced by Lotay and Pacini [13,14]. In every case the heart of the proof is to make certain Hamiltonian perturbations. For this we use the method by Imagi, Joyce and Oliveira dos Santos [8,Theorem 4.7].
65#
發(fā)表于 2025-4-1 20:11:45 | 只看該作者
66#
發(fā)表于 2025-4-2 02:42:13 | 只看該作者
2194-1009 brought together top researchers in both fields (birational geometry and complex geometry) to solve some of these problems and understand the relations between978-3-031-17861-0978-3-031-17859-7Series ISSN 2194-1009 Series E-ISSN 2194-1017
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巫溪县| 浦县| 湟中县| 肇源县| 湘潭市| 云梦县| 武隆县| 霍林郭勒市| 体育| 新和县| 兰考县| 永泰县| 清流县| 新宁县| 长沙县| 宜州市| 贵阳市| 云龙县| 神木县| 施甸县| 沁阳市| 青冈县| 囊谦县| 洞口县| 潞西市| 芮城县| 堆龙德庆县| 宣化县| 九寨沟县| 神木县| 象山县| 祁连县| 彭水| 罗田县| 保山市| 徐州市| 正安县| 佳木斯市| 定结县| 和顺县| 沾化县|