找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Birational Geometry, K?hler–Einstein Metrics and Degenerations; Moscow, Shanghai and Ivan Cheltsov,Xiuxiong Chen,Jihun Park Conference proc

[復(fù)制鏈接]
樓主: 烈酒
61#
發(fā)表于 2025-4-1 05:55:02 | 只看該作者
62#
發(fā)表于 2025-4-1 07:33:55 | 只看該作者
Das Recht auf pers?nliche Freiheitiary types of duality: on one side, symplectic duality between . and a crepant resolution of the . singularity; on the other side, toric duality between two types of isolated quotient singularities. We give a correspondence between Lagrangian submanifolds of a cotangent bundle and vector bundles on
63#
發(fā)表于 2025-4-1 12:30:16 | 只看該作者
Testung, Trainierbarkeit und Rehabilitation,y metrics developed therein to provide a generalisation to the singular case of the result originally obtained by X. W.?Wang for the smooth case, which states that the existence of balanced metrics is equivalent to the Gieseker stability of the vector bundle. We also prove that the Bergman 1-paramet
64#
發(fā)表于 2025-4-1 16:40:22 | 只看該作者
https://doi.org/10.1007/978-3-8348-9692-6Lagrangians in K?hler–Einstein manifolds or more generally .-minimal Lagrangians introduced by Lotay and Pacini [13,14]. In every case the heart of the proof is to make certain Hamiltonian perturbations. For this we use the method by Imagi, Joyce and Oliveira dos Santos [8,Theorem 4.7].
65#
發(fā)表于 2025-4-1 20:11:45 | 只看該作者
66#
發(fā)表于 2025-4-2 02:42:13 | 只看該作者
2194-1009 brought together top researchers in both fields (birational geometry and complex geometry) to solve some of these problems and understand the relations between978-3-031-17861-0978-3-031-17859-7Series ISSN 2194-1009 Series E-ISSN 2194-1017
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建德市| 武夷山市| 武鸣县| 清河县| 扎赉特旗| 临桂县| 苗栗县| 屯留县| 亳州市| 岑巩县| 诸暨市| 旬阳县| 达孜县| 湖北省| 崇阳县| 乐清市| 什邡市| 景德镇市| 成武县| 新兴县| 湖口县| 连城县| 集贤县| 奈曼旗| 宜阳县| 彩票| 宣化县| 柯坪县| 辽中县| 中山市| 东港市| 从江县| 柳林县| 周至县| 靖宇县| 江阴市| 沅江市| 丽江市| 读书| 图们市| 福安市|