找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Birational Geometry, K?hler–Einstein Metrics and Degenerations; Moscow, Shanghai and Ivan Cheltsov,Xiuxiong Chen,Jihun Park Conference proc

[復(fù)制鏈接]
查看: 42496|回復(fù): 65
樓主
發(fā)表于 2025-3-21 20:01:41 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Birational Geometry, K?hler–Einstein Metrics and Degenerations
期刊簡(jiǎn)稱Moscow, Shanghai and
影響因子2023Ivan Cheltsov,Xiuxiong Chen,Jihun Park
視頻videohttp://file.papertrans.cn/189/188840/188840.mp4
學(xué)科分類Springer Proceedings in Mathematics & Statistics
圖書封面Titlebook: Birational Geometry, K?hler–Einstein Metrics and Degenerations; Moscow, Shanghai and Ivan Cheltsov,Xiuxiong Chen,Jihun Park Conference proc
影響因子.This book collects the proceedings of a series of conferences dedicated to birational geometry of Fano varieties held in Moscow, Shanghai and Pohang.The conferences were focused on the following two related problems:.?? existence of K?hler–Einstein metrics on Fano varieties.?? degenerations of Fano varieties.on which two famous conjectures were recently proved. The first is the famous Borisov–Alexeev–Borisov Conjecture on the boundedness of Fano varieties, proved by Caucher Birkar (for which he was awarded the Fields medal in 2018), and the second one is the (arguably even more famous) Tian–Yau–Donaldson Conjecture on the existence of K?hler–Einstein metrics on (smooth) Fano varieties and K-stability, which was proved by Xiuxiong Chen, Sir Simon Donaldson and Song Sun. The solutions for these longstanding conjectures have opened new directions in birational and K?hler geometries. These research directions generated new interesting mathematical problems, attracting the attention of mathematicians worldwide..These conferences brought together top researchers in both fields (birational geometry and complex geometry) to solve some of these problems and understand the relations between
Pindex Conference proceedings 2023
The information of publication is updating

書目名稱Birational Geometry, K?hler–Einstein Metrics and Degenerations影響因子(影響力)




書目名稱Birational Geometry, K?hler–Einstein Metrics and Degenerations影響因子(影響力)學(xué)科排名




書目名稱Birational Geometry, K?hler–Einstein Metrics and Degenerations網(wǎng)絡(luò)公開度




書目名稱Birational Geometry, K?hler–Einstein Metrics and Degenerations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Birational Geometry, K?hler–Einstein Metrics and Degenerations被引頻次




書目名稱Birational Geometry, K?hler–Einstein Metrics and Degenerations被引頻次學(xué)科排名




書目名稱Birational Geometry, K?hler–Einstein Metrics and Degenerations年度引用




書目名稱Birational Geometry, K?hler–Einstein Metrics and Degenerations年度引用學(xué)科排名




書目名稱Birational Geometry, K?hler–Einstein Metrics and Degenerations讀者反饋




書目名稱Birational Geometry, K?hler–Einstein Metrics and Degenerations讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:19:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:59:17 | 只看該作者
地板
發(fā)表于 2025-3-22 07:49:08 | 只看該作者
A Note on Families of K-Semistable Log-Fano Pairs,d of the nefness threeshold for the log-anti-canonical line bundle on families of K-stable log Fano pairs. We also prove a bound on the multiplicity of fibers for families of K-semistable log Fano varieties, which to the best of our knowledge is new.
5#
發(fā)表于 2025-3-22 11:38:31 | 只看該作者
6#
發(fā)表于 2025-3-22 13:41:50 | 只看該作者
Fibrations by Affine Lines on Rational Affine Surfaces with Irreducible Boundaries,efined over an algebraically closed field of characteristic zero. We observe that except for two exceptions, these surfaces . admit infinitely many families of .-fibrations over the projective line with irreducible fibers and a unique singular fiber of arbitrarily large multiplicity. For .-fibration
7#
發(fā)表于 2025-3-22 19:24:20 | 只看該作者
On Fano Threefolds of Degree 22 After Cheltsov and Shramov,ve group form a one-dimensional family. Cheltsov and Shramov showed that all but two of them admit K?hler–Einstein metrics. In this paper, we show that the remaining Fano threefolds also admit K?hler–Einstein metrics.
8#
發(fā)表于 2025-3-22 23:48:30 | 只看該作者
Lagrangian Skeleta, Collars and Duality,iary types of duality: on one side, symplectic duality between . and a crepant resolution of the . singularity; on the other side, toric duality between two types of isolated quotient singularities. We give a correspondence between Lagrangian submanifolds of a cotangent bundle and vector bundles on
9#
發(fā)表于 2025-3-23 02:54:45 | 只看該作者
10#
發(fā)表于 2025-3-23 09:08:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 05:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
稷山县| 临潭县| 宽甸| 德州市| 鄯善县| 资源县| 咸宁市| 乐业县| 泾川县| 惠水县| 壶关县| 濮阳市| 池州市| 乌拉特中旗| 新余市| 依兰县| 楚雄市| 荣成市| 搜索| 伊川县| 海晏县| 富平县| 图们市| 大兴区| 牡丹江市| 新宁县| 民乐县| 余姚市| 淄博市| 临高县| 枣庄市| 启东市| 昆明市| 双江| 和平县| 专栏| 宜宾县| 黑山县| 中方县| 屯留县| 澳门|