找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Birational Geometry, K?hler–Einstein Metrics and Degenerations; Moscow, Shanghai and Ivan Cheltsov,Xiuxiong Chen,Jihun Park Conference proc

[復制鏈接]
查看: 42489|回復: 65
樓主
發(fā)表于 2025-3-21 20:01:41 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Birational Geometry, K?hler–Einstein Metrics and Degenerations
期刊簡稱Moscow, Shanghai and
影響因子2023Ivan Cheltsov,Xiuxiong Chen,Jihun Park
視頻videohttp://file.papertrans.cn/189/188840/188840.mp4
學科分類Springer Proceedings in Mathematics & Statistics
圖書封面Titlebook: Birational Geometry, K?hler–Einstein Metrics and Degenerations; Moscow, Shanghai and Ivan Cheltsov,Xiuxiong Chen,Jihun Park Conference proc
影響因子.This book collects the proceedings of a series of conferences dedicated to birational geometry of Fano varieties held in Moscow, Shanghai and Pohang.The conferences were focused on the following two related problems:.?? existence of K?hler–Einstein metrics on Fano varieties.?? degenerations of Fano varieties.on which two famous conjectures were recently proved. The first is the famous Borisov–Alexeev–Borisov Conjecture on the boundedness of Fano varieties, proved by Caucher Birkar (for which he was awarded the Fields medal in 2018), and the second one is the (arguably even more famous) Tian–Yau–Donaldson Conjecture on the existence of K?hler–Einstein metrics on (smooth) Fano varieties and K-stability, which was proved by Xiuxiong Chen, Sir Simon Donaldson and Song Sun. The solutions for these longstanding conjectures have opened new directions in birational and K?hler geometries. These research directions generated new interesting mathematical problems, attracting the attention of mathematicians worldwide..These conferences brought together top researchers in both fields (birational geometry and complex geometry) to solve some of these problems and understand the relations between
Pindex Conference proceedings 2023
The information of publication is updating

書目名稱Birational Geometry, K?hler–Einstein Metrics and Degenerations影響因子(影響力)




書目名稱Birational Geometry, K?hler–Einstein Metrics and Degenerations影響因子(影響力)學科排名




書目名稱Birational Geometry, K?hler–Einstein Metrics and Degenerations網(wǎng)絡公開度




書目名稱Birational Geometry, K?hler–Einstein Metrics and Degenerations網(wǎng)絡公開度學科排名




書目名稱Birational Geometry, K?hler–Einstein Metrics and Degenerations被引頻次




書目名稱Birational Geometry, K?hler–Einstein Metrics and Degenerations被引頻次學科排名




書目名稱Birational Geometry, K?hler–Einstein Metrics and Degenerations年度引用




書目名稱Birational Geometry, K?hler–Einstein Metrics and Degenerations年度引用學科排名




書目名稱Birational Geometry, K?hler–Einstein Metrics and Degenerations讀者反饋




書目名稱Birational Geometry, K?hler–Einstein Metrics and Degenerations讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:19:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:59:17 | 只看該作者
地板
發(fā)表于 2025-3-22 07:49:08 | 只看該作者
A Note on Families of K-Semistable Log-Fano Pairs,d of the nefness threeshold for the log-anti-canonical line bundle on families of K-stable log Fano pairs. We also prove a bound on the multiplicity of fibers for families of K-semistable log Fano varieties, which to the best of our knowledge is new.
5#
發(fā)表于 2025-3-22 11:38:31 | 只看該作者
6#
發(fā)表于 2025-3-22 13:41:50 | 只看該作者
Fibrations by Affine Lines on Rational Affine Surfaces with Irreducible Boundaries,efined over an algebraically closed field of characteristic zero. We observe that except for two exceptions, these surfaces . admit infinitely many families of .-fibrations over the projective line with irreducible fibers and a unique singular fiber of arbitrarily large multiplicity. For .-fibration
7#
發(fā)表于 2025-3-22 19:24:20 | 只看該作者
On Fano Threefolds of Degree 22 After Cheltsov and Shramov,ve group form a one-dimensional family. Cheltsov and Shramov showed that all but two of them admit K?hler–Einstein metrics. In this paper, we show that the remaining Fano threefolds also admit K?hler–Einstein metrics.
8#
發(fā)表于 2025-3-22 23:48:30 | 只看該作者
Lagrangian Skeleta, Collars and Duality,iary types of duality: on one side, symplectic duality between . and a crepant resolution of the . singularity; on the other side, toric duality between two types of isolated quotient singularities. We give a correspondence between Lagrangian submanifolds of a cotangent bundle and vector bundles on
9#
發(fā)表于 2025-3-23 02:54:45 | 只看該作者
10#
發(fā)表于 2025-3-23 09:08:49 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 04:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
子洲县| 河曲县| 汝城县| 汽车| 台北市| 瓦房店市| 诸暨市| 富宁县| 灵寿县| 临颍县| 留坝县| 永年县| 疏附县| 鹿泉市| 晋州市| 金塔县| 永川市| 赤城县| 金门县| 丹寨县| 石屏县| 盐边县| 吉木乃县| 龙陵县| 双牌县| 农安县| 休宁县| 临夏市| 青阳县| 习水县| 淮安市| 黑水县| 建宁县| 通城县| 阿勒泰市| 河北省| 浮梁县| 姚安县| 霸州市| 楚雄市| 弋阳县|