找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Birational Geometry of Hypersurfaces; Gargnano del Garda, Andreas Hochenegger,Manfred Lehn,Paolo Stellari Book 2019 Springer Nature Switze

[復制鏈接]
樓主: magnify
11#
發(fā)表于 2025-3-23 13:38:20 | 只看該作者
Echte Erziehung aus Frankreich,and unirationality, R-equivalence on rational points, Chow groups of zero-cycles, Galois action on the Picard group, Brauer group, higher unramified cohomology, global differentials, specialisation method (via R-equivalence), geometrically rational surfaces, cubic hypersurfaces.
12#
發(fā)表于 2025-3-23 13:51:10 | 只看該作者
https://doi.org/10.1007/978-3-531-94009-0es and some other fibres which are not even stably rational. This used the specialisation method of Voisin, as extended by Pirutka and myself. Under specific circumstances, a simplified version of the specialisation method was produced by Schreieder, leading to a simpler proof of the HPT example. I
13#
發(fā)表于 2025-3-23 18:50:47 | 只看該作者
14#
發(fā)表于 2025-3-23 23:37:17 | 只看該作者
https://doi.org/10.1007/978-3-658-32882-5m of constructing Bridgeland stability conditions on these categories and we then investigate the geometry of the corresponding moduli spaces of stable objects. We discuss a number of consequences related to cubic fourfolds including new proofs of the Torelli theorem and of the integral Hodge conjec
15#
發(fā)表于 2025-3-24 02:21:08 | 只看該作者
16#
發(fā)表于 2025-3-24 08:47:30 | 只看該作者
17#
發(fā)表于 2025-3-24 13:00:09 | 只看該作者
18#
發(fā)表于 2025-3-24 15:20:50 | 只看該作者
19#
發(fā)表于 2025-3-24 20:52:18 | 只看該作者
20#
發(fā)表于 2025-3-25 02:12:36 | 只看該作者
,Durchführung der Befragung der Mentoren,ge structures that come naturally associated with a cubic fourfold. The emphasis is on the Hodge and lattice theoretic aspects with many technical details worked out explicitly. More geometric or derived results are only hinted at.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 16:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
那曲县| 通城县| 鄄城县| 库车县| 格尔木市| 元阳县| 金乡县| 磐石市| 平顺县| 鹰潭市| 华容县| 五华县| 泉州市| 黄冈市| 福州市| 姚安县| 漠河县| 基隆市| 棋牌| 迁安市| 东光县| 奎屯市| 宜都市| 涿州市| 利辛县| 渭南市| 大化| 梁山县| 景宁| 清流县| 武邑县| 青阳县| 海盐县| 棋牌| 五大连池市| 确山县| 新干县| 鄄城县| 平陆县| 乐清市| 东方市|