找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Birational Geometry of Hypersurfaces; Gargnano del Garda, Andreas Hochenegger,Manfred Lehn,Paolo Stellari Book 2019 Springer Nature Switze

[復(fù)制鏈接]
查看: 29246|回復(fù): 40
樓主
發(fā)表于 2025-3-21 16:16:58 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Birational Geometry of Hypersurfaces
期刊簡稱Gargnano del Garda,
影響因子2023Andreas Hochenegger,Manfred Lehn,Paolo Stellari
視頻videohttp://file.papertrans.cn/189/188839/188839.mp4
發(fā)行地址Describes the most intriguing Hodge-theoretic aspects of cubic fourfolds.Presents well-written surveys by leading experts on recent developments on rationality questions for hypersurfaces.Provides a c
學(xué)科分類Lecture Notes of the Unione Matematica Italiana
圖書封面Titlebook: Birational Geometry of Hypersurfaces; Gargnano del Garda,  Andreas Hochenegger,Manfred Lehn,Paolo Stellari Book 2019 Springer Nature Switze
影響因子.Originating from the School on Birational Geometry of Hypersurfaces, this volume focuses on the notion of (stable) rationality of projective varieties and, more specifically, hypersurfaces in?projective spaces, and provides a large number of open questions, techniques and spectacular results.. . The aim of the school was to shed light on this vast area of research by concentrating on two main aspects: (1) Approaches focusing on (stable) rationality using deformation theory and Chow-theoretic tools like decomposition of the diagonal; (2) The connection between K3 surfaces, hyperk?hler geometry and cubic fourfolds, which has both a Hodge-theoretic and a homological side.. . Featuring the beautiful lectures given at the school by Jean-Louis Colliot-Thélène, Daniel Huybrechts, Emanuele Macrì, and Claire Voisin, the volume also includes additional notes by János Kollár and an appendix by Andreas Hochenegger.. .?.
Pindex Book 2019
The information of publication is updating

書目名稱Birational Geometry of Hypersurfaces影響因子(影響力)




書目名稱Birational Geometry of Hypersurfaces影響因子(影響力)學(xué)科排名




書目名稱Birational Geometry of Hypersurfaces網(wǎng)絡(luò)公開度




書目名稱Birational Geometry of Hypersurfaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Birational Geometry of Hypersurfaces被引頻次




書目名稱Birational Geometry of Hypersurfaces被引頻次學(xué)科排名




書目名稱Birational Geometry of Hypersurfaces年度引用




書目名稱Birational Geometry of Hypersurfaces年度引用學(xué)科排名




書目名稱Birational Geometry of Hypersurfaces讀者反饋




書目名稱Birational Geometry of Hypersurfaces讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:34:18 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:57:15 | 只看該作者
地板
發(fā)表于 2025-3-22 06:01:59 | 只看該作者
5#
發(fā)表于 2025-3-22 10:12:05 | 只看該作者
https://doi.org/10.1007/978-3-030-18638-814-06,14E08,16E35,14D22,14C30; Algebraic Geometry; Rational Varieties; Cubic Fourfolds; Derived Categori
6#
發(fā)表于 2025-3-22 13:26:11 | 只看該作者
7#
發(fā)表于 2025-3-22 17:16:54 | 只看該作者
8#
發(fā)表于 2025-3-22 23:36:33 | 只看該作者
9#
發(fā)表于 2025-3-23 02:47:27 | 只看該作者
Hodge Theory of Cubic Fourfolds, Their Fano Varieties, and Associated K3 Categoriesge structures that come naturally associated with a cubic fourfold. The emphasis is on the Hodge and lattice theoretic aspects with many technical details worked out explicitly. More geometric or derived results are only hinted at.
10#
發(fā)表于 2025-3-23 07:12:37 | 只看該作者
https://doi.org/10.1007/978-3-658-40109-2o distinguish (stably) rational varieties from general unirational varieties. In particular, we study the notion of Chow or cohomological decomposition of the diagonal, which is a necessary criterion for stable rationality. Having better stability properties than the previously known obstructions un
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 20:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
化隆| 庆云县| 靖边县| 沙田区| 深州市| 遂溪县| 天峨县| 南开区| 馆陶县| 荔浦县| 大田县| 汝阳县| 龙井市| 阿巴嘎旗| 勐海县| 电白县| 大兴区| 景德镇市| 当涂县| 合水县| 雅安市| 务川| 县级市| 体育| 本溪| 兴国县| 文昌市| 内黄县| 灵山县| 临城县| 临沂市| 渝中区| 尤溪县| 土默特左旗| 日土县| 永兴县| 林芝县| 涞水县| 汉中市| 九江市| 沂源县|