找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Birational Geometry and Moduli Spaces; Elisabetta Colombo,Barbara Fantechi,Rita Pardini Book 2020 Springer Nature Switzerland AG 2020 Modu

[復制鏈接]
樓主: JAR
11#
發(fā)表于 2025-3-23 13:35:40 | 只看該作者
Programmieren von MikrocomputernIn this paper we show that the Chern numbers of a smooth Mori fibre space in dimension three are bounded in terms of the underlying topological manifold. We also generalise a theorem of Cascini and the second named author on the boundedness of Chern numbers of certain threefolds to the case of negative Kodaira dimension.
12#
發(fā)表于 2025-3-23 15:50:18 | 只看該作者
,Negative Rational Curves and Their Deformations on Hyperk?hler Manifolds,We survey some results about rational curves on hyperk?hler manifolds, explaining how to prove a certain deformation-invariance statement for loci covered by rational curves with negative Beauville–Bogomolov square.
13#
發(fā)表于 2025-3-23 21:37:42 | 只看該作者
A Travel Guide to the Canonical Bundle Formula,We survey known results on the canonical bundle formula and its applications in algebraic geometry.
14#
發(fā)表于 2025-3-23 22:35:08 | 只看該作者
,Some Examples of Calabi–Yau Pairs with Maximal Intersection and No Toric Model,It is known that a maximal intersection log canonical Calabi–Yau surface pair is crepant birational to a toric pair. This does not hold in higher dimension: this article presents some examples of maximal intersection Calabi–Yau pairs that admit no toric model.
15#
發(fā)表于 2025-3-24 03:16:01 | 只看該作者
What is the Monodromy Property for Degenerations of Calabi-Yau Varieties?,In this survey, we discuss the state of art about the monodromy property for Calabi-Yau varieties. We explain what is the monodromy property for Calabi-Yau varieties and then discuss some examples of Calabi-Yau varieties that satisfy this property. After this recap, we discuss a possible approach to future research in this area.
16#
發(fā)表于 2025-3-24 10:30:45 | 只看該作者
17#
發(fā)表于 2025-3-24 13:41:14 | 只看該作者
18#
發(fā)表于 2025-3-24 17:48:56 | 只看該作者
Birational Geometry and Moduli Spaces978-3-030-37114-2Series ISSN 2281-518X Series E-ISSN 2281-5198
19#
發(fā)表于 2025-3-24 22:13:15 | 只看該作者
Schnittpunktsatz, statisches Moment,bic threefolds, as described by Allcock, Carlson and Toledo, and the moduli space of fourfolds of .3.-type with a special non-symplectic automorphism of order three; then, I will show some consequences of this isomorphism concerning degenerations of non-symplectic automorphisms. Finally we will expl
20#
發(fā)表于 2025-3-25 01:51:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 20:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
天津市| 麟游县| 怀安县| 巩留县| 陕西省| 昌平区| 兴海县| 清苑县| 乌什县| 湟中县| 洛隆县| 刚察县| 桂阳县| 临湘市| 富锦市| 石柱| 惠水县| 津市市| 巍山| 赣州市| 长阳| 浦北县| 沁水县| 南宁市| 香格里拉县| 宁津县| 桃园县| 井陉县| 祁门县| 九龙县| 涞水县| 岢岚县| 兰溪市| 昭平县| 天等县| 灌阳县| 铅山县| 太原市| 温宿县| 什邡市| 冕宁县|