找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Birational Geometry and Moduli Spaces; Elisabetta Colombo,Barbara Fantechi,Rita Pardini Book 2020 Springer Nature Switzerland AG 2020 Modu

[復(fù)制鏈接]
查看: 40927|回復(fù): 44
樓主
發(fā)表于 2025-3-21 16:41:12 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Birational Geometry and Moduli Spaces
影響因子2023Elisabetta Colombo,Barbara Fantechi,Rita Pardini
視頻videohttp://file.papertrans.cn/189/188837/188837.mp4
發(fā)行地址Includes high-quality contributions from leading experts.Provides a wide variety of examples and up-to-date surveys.Offers new connections between birational geometry and moduli spaces
學(xué)科分類Springer INdAM Series
圖書封面Titlebook: Birational Geometry and Moduli Spaces;  Elisabetta Colombo,Barbara Fantechi,Rita Pardini Book 2020 Springer Nature Switzerland AG 2020 Modu
影響因子.This volume collects contributions from speakers at the INdAM Workshop “Birational Geometry and Moduli Spaces”, which was held in Rome on 11–15 June 2018. The workshop was devoted to the interplay between birational geometry and moduli spaces and the contributions of the volume reflect the same idea, focusing on both these areas and their interaction. In particular, the book includes both surveys and original papers on irreducible holomorphic symplectic manifolds, Severi varieties, degenerations of Calabi-Yau varieties, uniruled threefolds, toric Fano threefolds, mirror symmetry, canonical bundle formula, the Lefschetz principle, birational transformations, and deformations of diagrams of algebras. The intention is to disseminate the knowledge of advanced results and key techniques used to solve open problems. The book is intended for all advanced graduate students and researchers interested in the new research frontiers of birational geometry and moduli spaces.?.
Pindex Book 2020
The information of publication is updating

書目名稱Birational Geometry and Moduli Spaces影響因子(影響力)




書目名稱Birational Geometry and Moduli Spaces影響因子(影響力)學(xué)科排名




書目名稱Birational Geometry and Moduli Spaces網(wǎng)絡(luò)公開度




書目名稱Birational Geometry and Moduli Spaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Birational Geometry and Moduli Spaces被引頻次




書目名稱Birational Geometry and Moduli Spaces被引頻次學(xué)科排名




書目名稱Birational Geometry and Moduli Spaces年度引用




書目名稱Birational Geometry and Moduli Spaces年度引用學(xué)科排名




書目名稱Birational Geometry and Moduli Spaces讀者反饋




書目名稱Birational Geometry and Moduli Spaces讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:29:17 | 只看該作者
Elisabetta Colombo,Barbara Fantechi,Rita PardiniIncludes high-quality contributions from leading experts.Provides a wide variety of examples and up-to-date surveys.Offers new connections between birational geometry and moduli spaces
板凳
發(fā)表于 2025-3-22 03:56:58 | 只看該作者
地板
發(fā)表于 2025-3-22 08:38:51 | 只看該作者
https://doi.org/10.1007/978-3-030-37114-2Moduli Spaces; Birational Geometry; Deformation Theory; Holomorphic sympletic manifolds; Birational tran
5#
發(fā)表于 2025-3-22 10:16:18 | 只看該作者
978-3-030-37116-6Springer Nature Switzerland AG 2020
6#
發(fā)表于 2025-3-22 16:04:42 | 只看該作者
https://doi.org/10.1007/978-3-322-89855-5We survey some results about rational curves on hyperk?hler manifolds, explaining how to prove a certain deformation-invariance statement for loci covered by rational curves with negative Beauville–Bogomolov square.
7#
發(fā)表于 2025-3-22 20:26:00 | 只看該作者
8#
發(fā)表于 2025-3-23 00:43:47 | 只看該作者
Programmieren von MikrocomputernIt is known that a maximal intersection log canonical Calabi–Yau surface pair is crepant birational to a toric pair. This does not hold in higher dimension: this article presents some examples of maximal intersection Calabi–Yau pairs that admit no toric model.
9#
發(fā)表于 2025-3-23 05:21:59 | 只看該作者
10#
發(fā)表于 2025-3-23 06:43:18 | 只看該作者
,Programmaufbau und -ausführung,In this note we illustrate the Fanosearch programme of Coates, Corti, Galkin, Golyshev, and Kasprzyk in the example of the anticanonical cone over the smooth del Pezzo surface of degree 6.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 06:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
云和县| 沛县| 青冈县| 化德县| 鸡泽县| 义马市| 醴陵市| 虞城县| 海安县| 四子王旗| 盐边县| 阿瓦提县| 崇明县| 固安县| 阿拉尔市| 宜宾市| 南乐县| 阳高县| 武宣县| 珲春市| 龙胜| 横峰县| 绥江县| 黄浦区| 台山市| 阿合奇县| 洪江市| 类乌齐县| 安仁县| 泸西县| 内江市| 图木舒克市| 衡山县| 长寿区| 贺兰县| 克拉玛依市| 闻喜县| 东丰县| 沁水县| 门源| 宁明县|