找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Biometric Recognition; 11th Chinese Confere Zhisheng You,Jie Zhou,Qijun Zhao Conference proceedings 2016 Springer International Publishing

[復(fù)制鏈接]
樓主: osteomalacia
31#
發(fā)表于 2025-3-26 20:59:17 | 只看該作者
32#
發(fā)表于 2025-3-27 03:23:12 | 只看該作者
Pose Aided Deep Convolutional Neural Networks for Face Alignmentrification, face detection and face alignment. However, face alignment remains a challenging problem due to large pose variation and the lack of data. Although researchers have designed various network architecture to handle this problem, pose information was rarely used explicitly. In this paper, w
33#
發(fā)表于 2025-3-27 07:19:47 | 只看該作者
Face Landmark Localization Using a Single Deep Networkolutional Network (TCDCN), which are complicated and difficult to train. To solve this problem, this paper proposes a new Single Deep CNN (SDN). Unlike cascaded CNNs, SDN stacks three layer groups: each group consists of two convolutional layers and a max-pooling layer. This network structure can ex
34#
發(fā)表于 2025-3-27 09:38:15 | 只看該作者
Cascaded Regression for 3D Face Alignmentted by face shape deformations and poor light conditions. With the assist of extra shape information provided by 3D facial model, these difficulties can be eased to some degree. In this paper, we propose 3D Cascaded Regression for detecting facial landmarks on 3D faces. Our algorithm makes full use
35#
發(fā)表于 2025-3-27 15:30:32 | 只看該作者
Deep CNNs for Face Verificationo use different landmarks of faces to solve the problems caused by poses. In order to increase the ability of verification, semi-verification signal is used for training one network. The final face representation is formed by catenating features of two deep CNNs after PCA reduction. What’s more, eac
36#
發(fā)表于 2025-3-27 17:52:19 | 只看該作者
37#
發(fā)表于 2025-3-27 23:52:22 | 只看該作者
38#
發(fā)表于 2025-3-28 05:12:19 | 只看該作者
39#
發(fā)表于 2025-3-28 09:06:42 | 只看該作者
A Semi-supervised Learning Algorithm Based on Low Rank and Weighted Sparse Graph for Face Recognitio novel low rank and weighted sparse graph. First, we utilize exact low rank representation by the nuclear norm and Forbenius norm to capture the global subspace structure. Meanwhile, we build the weighted sparse regularization term with shape interaction information to capture the local linear struc
40#
發(fā)表于 2025-3-28 11:32:22 | 只看該作者
Multilinear Local Fisher Discriminant Analysis for Face Recognitiontion. MLFDA achieves feature extraction by finding a multilinear projection to map the original tensor space into a tensor subspace that maximize the local between-class scatter as well as minimize the local within-class scatter. The experimental result shows that MLFDA has an outperformance.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 08:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
寿宁县| 翁源县| 普安县| 阿坝| 四子王旗| 安国市| 蒙自县| 扎赉特旗| 靖远县| 潞西市| 浦县| 洪江市| 肥乡县| 民权县| 桐乡市| 施秉县| 镇康县| 桓台县| 阿拉善右旗| 广东省| 宽城| 桐城市| 吴堡县| 辽源市| 枣阳市| 阳东县| 忻城县| 理塘县| 泾阳县| 宜兰县| 贡嘎县| 洛隆县| 壤塘县| 金堂县| 柳州市| 绥宁县| 交城县| 德令哈市| 赫章县| 渑池县| 台东县|