找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biometric Recognition; 11th Chinese Confere Zhisheng You,Jie Zhou,Qijun Zhao Conference proceedings 2016 Springer International Publishing

[復(fù)制鏈接]
查看: 54528|回復(fù): 62
樓主
發(fā)表于 2025-3-21 17:01:20 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Biometric Recognition
期刊簡稱11th Chinese Confere
影響因子2023Zhisheng You,Jie Zhou,Qijun Zhao
視頻videohttp://file.papertrans.cn/189/188171/188171.mp4
發(fā)行地址Includes supplementary material:
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Biometric Recognition; 11th Chinese Confere Zhisheng You,Jie Zhou,Qijun Zhao Conference proceedings 2016 Springer International Publishing
影響因子.This book constitutes the refereed proceedings of the 11th Chinese Conference on Biometric Recognition, CCBR 2016, held in Chengdu, China, in October 2016...The 84 revised full papers presented in this book were carefully reviewed and selected from 138 submissions. The papers focus on Face Recognition and Analysis; Fingerprint, Palm-print and Vascular Biometrics; Iris and Ocular Biometrics; Behavioral Biometrics; Affective Computing; Feature Extraction and Classification Theory; Anti-Spoofing and Privacy; Surveillance; and DNA and Emerging Biometrics..
Pindex Conference proceedings 2016
The information of publication is updating

書目名稱Biometric Recognition影響因子(影響力)




書目名稱Biometric Recognition影響因子(影響力)學(xué)科排名




書目名稱Biometric Recognition網(wǎng)絡(luò)公開度




書目名稱Biometric Recognition網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Biometric Recognition被引頻次




書目名稱Biometric Recognition被引頻次學(xué)科排名




書目名稱Biometric Recognition年度引用




書目名稱Biometric Recognition年度引用學(xué)科排名




書目名稱Biometric Recognition讀者反饋




書目名稱Biometric Recognition讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:33:48 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:18:06 | 只看該作者
Muhammad Hasan Amara,Abd Al-Rahman Mar’I performance is largely influenced by block generation and post-processing, concealing the performance of face classification core module. Secondly, implementing and optimizing all the three steps results in a very heavy work, which is a big barrier for researchers who only cares about classificatio
地板
發(fā)表于 2025-3-22 05:14:08 | 只看該作者
5#
發(fā)表于 2025-3-22 11:57:56 | 只看該作者
Muhammad Hasan Amara,Abd Al-Rahman Mar’Iand estimates 2D and 3D facial feature points simultaneously. In stage one, 2D and 3D facial feature points are roughly detected on the input face image, and head pose analysis is applied based on the 3D facial feature points to estimate its head pose. The face is then classified into one of three c
6#
發(fā)表于 2025-3-22 12:58:24 | 只看該作者
Language Attitudes and Ideologies,to large variations due to differences in expressions and pose. Unlike previous shape regression-based approaches, we propose to reference features weighted by three different face landmarks, which are much more robust to shape variations. Then, a correlation-based feature selection method and a two
7#
發(fā)表于 2025-3-22 20:28:17 | 只看該作者
https://doi.org/10.1007/0-306-47588-Xrification, face detection and face alignment. However, face alignment remains a challenging problem due to large pose variation and the lack of data. Although researchers have designed various network architecture to handle this problem, pose information was rarely used explicitly. In this paper, w
8#
發(fā)表于 2025-3-22 23:46:15 | 只看該作者
https://doi.org/10.1007/0-306-47588-Xolutional Network (TCDCN), which are complicated and difficult to train. To solve this problem, this paper proposes a new Single Deep CNN (SDN). Unlike cascaded CNNs, SDN stacks three layer groups: each group consists of two convolutional layers and a max-pooling layer. This network structure can ex
9#
發(fā)表于 2025-3-23 05:14:25 | 只看該作者
10#
發(fā)表于 2025-3-23 08:06:04 | 只看該作者
https://doi.org/10.1007/0-306-47588-Xo use different landmarks of faces to solve the problems caused by poses. In order to increase the ability of verification, semi-verification signal is used for training one network. The final face representation is formed by catenating features of two deep CNNs after PCA reduction. What’s more, eac
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 07:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奉贤区| 谷城县| 镶黄旗| 仁布县| 沭阳县| 宜黄县| 咸丰县| 海安县| 阿鲁科尔沁旗| 黄石市| 福泉市| 遵化市| 河东区| 台东县| 板桥市| 岐山县| 临泽县| 宁远县| 宁海县| 鲜城| 北碚区| 颍上县| 文安县| 文登市| 鞍山市| 盐津县| 海伦市| 灵山县| 宝鸡市| 纳雍县| 军事| 宁远县| 永兴县| 鄢陵县| 水富县| 聊城市| 双鸭山市| 辉南县| 乳山市| 张家口市| 建水县|