找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bioinformatics Research and Development; First International Sepp Hochreiter,Roland Wagner Conference proceedings 2007 Springer-Verlag Ber

[復(fù)制鏈接]
樓主: interleukins
41#
發(fā)表于 2025-3-28 16:40:35 | 只看該作者
42#
發(fā)表于 2025-3-28 21:27:34 | 只看該作者
43#
發(fā)表于 2025-3-29 01:15:02 | 只看該作者
Inverse Bifurcation Analysis of a Model for the Mammalian , ,/, Regulatory Module, can be used to identify small sets of ”influential” submodules and parameters within a given network. In addition, hierarchical strategies can be used to generate parameter solutions of increasing cardinality of non-zero entries. We apply the proposed methods to analyze a model of the mammalian ../. regulatory module.
44#
發(fā)表于 2025-3-29 06:54:35 | 只看該作者
0302-9743 periments for investigating disease pathogenesis, was very inspiring and gave new insights into future bioinformatics challenges.978-3-540-71232-9978-3-540-71233-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
45#
發(fā)表于 2025-3-29 08:04:49 | 只看該作者
Bayesian Inference of Gene Regulatory Networks Using Gene Expression Time Series Datachical prior distribution over interaction strenghts favours sparse networks, enabling the method to efficiently deal with small datasets..Results on a simulated dataset show that our method correctly learns network structure and model parameters even for short time series. Furthermore, we are able
46#
發(fā)表于 2025-3-29 13:56:58 | 只看該作者
47#
發(fā)表于 2025-3-29 19:20:17 | 只看該作者
Individualized Predictions of Survival Time Distributions from Gene Expression Data Using a Bayesianh, combining a Cox regression model with a hierarchical prior distribution on the regression parameters for feature selection. This prior enables the method to efficiently deal with the low sample number, high dimensionality setting characteristic of microarray datasets. We then sample from the post
48#
發(fā)表于 2025-3-29 20:03:06 | 只看該作者
49#
發(fā)表于 2025-3-30 01:52:35 | 只看該作者
50#
發(fā)表于 2025-3-30 05:39:33 | 只看該作者
satDNA Analyzer 1.2 as a Valuable Computing Tool for Evolutionary Analysis of Satellite-DNA Familiesre since every utility is automatized and collected in a single software package, so the user does not need to use different programs. Additionally, it significantly reduces the rate of data miscalculations due to human errors, very prone to occur specially in large files.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 03:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南召县| 麻阳| 墨玉县| 孟连| 平乐县| 信丰县| 彭阳县| 东莞市| 闻喜县| 南川市| 南皮县| 噶尔县| 扎兰屯市| 松滋市| 山丹县| 大港区| 大同县| 宿松县| 修武县| 沅陵县| 自贡市| 万山特区| 丹凤县| 遵义县| 大方县| 海丰县| 佛冈县| 桦甸市| 长治县| 沙坪坝区| 霞浦县| 九台市| 当雄县| 九江县| 河间市| 马尔康县| 黄山市| 防城港市| 万安县| 霍林郭勒市| 邢台市|