找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Binary Quadratic Forms; An Algorithmic Appro Johannes Buchmann,Ulrich Vollmer Book 2007 Springer-Verlag Berlin Heidelberg 2007 Number theor

[復(fù)制鏈接]
樓主: minuscule
41#
發(fā)表于 2025-3-28 17:01:22 | 只看該作者
42#
發(fā)表于 2025-3-28 19:30:09 | 只看該作者
Equivalence of Forms, introduce transformations that do not change the minimum of a form. Also, the numbers that can be represented by f remain the same. Those transformations will enable us to simplify the representation problem and the minimum problem.
43#
發(fā)表于 2025-3-28 23:10:56 | 只看該作者
Reduction of Indefinite Forms,ndefinite forms can only be used to decide equivalence of integral indefinite forms and the decision algorithm is much less efficient than in the positive definite case since reduction is no longer unique. Reduction theory also solves the minimum problem for integral indefinite forms.
44#
發(fā)表于 2025-3-29 03:57:42 | 只看該作者
45#
發(fā)表于 2025-3-29 10:57:15 | 只看該作者
Subexponential Algorithms,uivalence problem. Those algorithms are much faster than the deterministic algorithms presented in Chapter 9. They use an approach dubbed . which originated in work by Kraichik [Kra22] and seemingly independent work by Western and Miller [WM68]. The first proposals to apply this approach in the cont
46#
發(fā)表于 2025-3-29 13:03:55 | 只看該作者
47#
發(fā)表于 2025-3-29 18:59:50 | 只看該作者
48#
發(fā)表于 2025-3-29 21:09:14 | 只看該作者
first review a Clifford analysis-based approach to the construction of higher-dimensional prolates associated with the ball-truncated Fourier transform. A non-singular Clifford differential operator acting on multidimensional Clifford-valued functions is shown to commute with the ball-truncated Four
49#
發(fā)表于 2025-3-30 02:32:28 | 只看該作者
50#
發(fā)表于 2025-3-30 08:07:50 | 只看該作者
Book 2015ing pattern from cereals to non-cereals, in accordance with the changing consumption pattern. The book would be of interest to teachers, researchers, policymakers, students and general readers having an interest in agricultural development in India..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 03:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邵阳县| 曲水县| 朝阳市| 确山县| 寿阳县| 古田县| 许昌市| 彩票| 临猗县| 宜兴市| 南通市| 鄂伦春自治旗| 通州市| 西乌珠穆沁旗| 梧州市| 桂平市| 芜湖县| 东乌珠穆沁旗| 遂川县| 兴城市| 射洪县| 宜昌市| 溧水县| 洛南县| 东明县| 长海县| 红河县| 普陀区| 邵阳市| 海城市| 南城县| 兴宁市| 双辽市| 洪雅县| 嵩明县| 东乡| 汨罗市| 普宁市| 吉安市| 晋江市| 樟树市|