找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Binary Quadratic Forms; An Algorithmic Appro Johannes Buchmann,Ulrich Vollmer Book 2007 Springer-Verlag Berlin Heidelberg 2007 Number theor

[復(fù)制鏈接]
樓主: minuscule
41#
發(fā)表于 2025-3-28 17:01:22 | 只看該作者
42#
發(fā)表于 2025-3-28 19:30:09 | 只看該作者
Equivalence of Forms, introduce transformations that do not change the minimum of a form. Also, the numbers that can be represented by f remain the same. Those transformations will enable us to simplify the representation problem and the minimum problem.
43#
發(fā)表于 2025-3-28 23:10:56 | 只看該作者
Reduction of Indefinite Forms,ndefinite forms can only be used to decide equivalence of integral indefinite forms and the decision algorithm is much less efficient than in the positive definite case since reduction is no longer unique. Reduction theory also solves the minimum problem for integral indefinite forms.
44#
發(fā)表于 2025-3-29 03:57:42 | 只看該作者
45#
發(fā)表于 2025-3-29 10:57:15 | 只看該作者
Subexponential Algorithms,uivalence problem. Those algorithms are much faster than the deterministic algorithms presented in Chapter 9. They use an approach dubbed . which originated in work by Kraichik [Kra22] and seemingly independent work by Western and Miller [WM68]. The first proposals to apply this approach in the cont
46#
發(fā)表于 2025-3-29 13:03:55 | 只看該作者
47#
發(fā)表于 2025-3-29 18:59:50 | 只看該作者
48#
發(fā)表于 2025-3-29 21:09:14 | 只看該作者
first review a Clifford analysis-based approach to the construction of higher-dimensional prolates associated with the ball-truncated Fourier transform. A non-singular Clifford differential operator acting on multidimensional Clifford-valued functions is shown to commute with the ball-truncated Four
49#
發(fā)表于 2025-3-30 02:32:28 | 只看該作者
50#
發(fā)表于 2025-3-30 08:07:50 | 只看該作者
Book 2015ing pattern from cereals to non-cereals, in accordance with the changing consumption pattern. The book would be of interest to teachers, researchers, policymakers, students and general readers having an interest in agricultural development in India..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 03:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
普陀区| 紫阳县| 罗田县| 陆良县| 日照市| 城固县| 锡林郭勒盟| 玉屏| 铅山县| 琼结县| 容城县| 彰化县| 简阳市| 友谊县| 海盐县| 田东县| 会泽县| 淅川县| 茂名市| 余江县| 达拉特旗| 都昌县| 库车县| 平塘县| 安塞县| 政和县| 武汉市| 黑山县| 同德县| 塔河县| 淮南市| 阳谷县| 桃江县| 仙桃市| 嵊泗县| 清苑县| 东平县| 交城县| 天峨县| 柘荣县| 虎林市|