找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Binary Quadratic Forms; An Algorithmic Appro Johannes Buchmann,Ulrich Vollmer Book 2007 Springer-Verlag Berlin Heidelberg 2007 Number theor

[復(fù)制鏈接]
樓主: minuscule
21#
發(fā)表于 2025-3-25 06:07:53 | 只看該作者
Politikvorschl?ge und ZusammenfassungLet . ε {±1}, ., and .. In this chapter we define the product of lattices in A and characterize the two-dimensional lattices in A whose product is a lattice. By a form we mean an irrational form with real coefficients and non-zero discriminant. By an . we mean an integer Δ with Δ ≡ 0, 1 mod 4 which is not a square in ?.
22#
發(fā)表于 2025-3-25 11:05:43 | 只看該作者
23#
發(fā)表于 2025-3-25 15:09:26 | 只看該作者
https://doi.org/10.1007/978-3-531-90181-7Let . be a real quadratic order, let Δ be the discriminant of ., and let . be the regulator of ..
24#
發(fā)表于 2025-3-25 16:00:37 | 只看該作者
Internationale Politik studierenIn this chapter, we will discuss several ways in which the theory of binary quadratic forms can be employed for cryptographic applications. Goals of cryptography encompass the maintenance of confidentiality, authenticity, integrity and non-reputability of electronic documents.
25#
發(fā)表于 2025-3-25 23:40:37 | 只看該作者
26#
發(fā)表于 2025-3-26 03:43:24 | 只看該作者
27#
發(fā)表于 2025-3-26 05:55:51 | 只看該作者
Forms, Bases, Points, and Lattices,In this chapter we explain the correspondence between binary quadratic forms with real coefficients and points, R-bases, and lattices in the real plane. This correspondence will enable us to use quadratic number fields and the geometry of numbers in the theory of forms.
28#
發(fā)表于 2025-3-26 09:23:58 | 只看該作者
29#
發(fā)表于 2025-3-26 15:03:19 | 只看該作者
30#
發(fā)表于 2025-3-26 19:27:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 07:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岚皋县| 且末县| 平安县| 全南县| 离岛区| 彭州市| 军事| 阳信县| 江山市| 钦州市| 尚义县| 宝坻区| 山阴县| 内丘县| 和平区| 林周县| 定安县| 将乐县| 集安市| 峨山| 疏勒县| 比如县| 祁东县| 望奎县| 新营市| 弥勒县| 常熟市| 彰化县| 凤城市| 武功县| 邵武市| 江达县| 前郭尔| 平远县| 时尚| 铜山县| 五大连池市| 昆明市| 新和县| 随州市| 台北县|