找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bilinear Regression Analysis; An Introduction Dietrich von Rosen Book 2018 Springer International Publishing AG, part of Springer Nature 20

[復制鏈接]
樓主: 相似
21#
發(fā)表于 2025-3-25 06:58:50 | 只看該作者
22#
發(fā)表于 2025-3-25 07:43:12 | 只看該作者
23#
發(fā)表于 2025-3-25 12:44:00 | 只看該作者
https://doi.org/10.1007/978-981-13-3699-7 approach is extended to cover tensor space decompositions which is a basic tool when considering bilinear regression models. The decompositions are illustrated in figures where one can follow how maximum likelihood estimators are obtained by projecting on appropriate subspaces.
24#
發(fā)表于 2025-3-25 19:23:39 | 只看該作者
Issues Decisive for China’s Rise or Fallsitions of the tensor space where within-individuals spaces also have an inner product which has to be estimated. All obtained estimators have explicit forms. A short literature review of bilinear regression models is given.
25#
發(fā)表于 2025-3-25 22:09:18 | 只看該作者
Energy Security and Territorial Disputesrived for all estimators as well as the covariance among the estimators from the same model. Calculations use knowledge about the matrix normal, Wishart and inverted Wishart distributions. It is shown that the estimators are asymptotically equivalent to normally distributed random variables.
26#
發(fā)表于 2025-3-26 00:27:59 | 只看該作者
27#
發(fā)表于 2025-3-26 05:09:22 | 只看該作者
https://doi.org/10.1007/978-981-13-3699-7gression models several natural residuals appear. The residuals are obtained by applying space decompositions of the tensor product of the between-individual and within-individual spaces. Density approximations are performed for the residuals. To obtain the distribution of the large residuals a para
28#
發(fā)表于 2025-3-26 11:28:01 | 只看該作者
29#
發(fā)表于 2025-3-26 14:26:04 | 只看該作者
30#
發(fā)表于 2025-3-26 20:31:02 | 只看該作者
https://doi.org/10.1007/978-981-13-3699-7A short introduction to bilinear regression analysis is presented. The statistical paradigm is introduced. Moreover, bilinear regression models are presented together with a number of examples. Some historical remarks on the material of the book are given.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 05:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
成武县| 县级市| 扶沟县| 新疆| 民权县| 巴里| 通海县| 阿瓦提县| 兴业县| 广饶县| 元阳县| 砚山县| 都兰县| 泸西县| 泰州市| 肃北| 潮州市| 福鼎市| 南陵县| 息烽县| 崇仁县| 桦甸市| 遂昌县| 靖州| 宁乡县| 普兰店市| 渭源县| 怀化市| 米泉市| 灵璧县| 海原县| 鹿泉市| 隆德县| 凉城县| 保靖县| 中超| 孝义市| 浮梁县| 阳朔县| 孝昌县| 高雄县|