找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bilinear Regression Analysis; An Introduction Dietrich von Rosen Book 2018 Springer International Publishing AG, part of Springer Nature 20

[復(fù)制鏈接]
查看: 32184|回復(fù): 39
樓主
發(fā)表于 2025-3-21 16:59:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Bilinear Regression Analysis
期刊簡稱An Introduction
影響因子2023Dietrich von Rosen
視頻videohttp://file.papertrans.cn/187/186236/186236.mp4
發(fā)行地址Presents results for bilinear regression models and their connection to classical statistical multivariate analysis.Sheds new light on the notion of linear and bilinear multivariate models.Includes bo
學(xué)科分類Lecture Notes in Statistics
圖書封面Titlebook: Bilinear Regression Analysis; An Introduction Dietrich von Rosen Book 2018 Springer International Publishing AG, part of Springer Nature 20
影響因子This book expands on the classical statistical multivariate analysis theory by focusing on bilinear regression models, a class of models comprising the classical growth curve model and its extensions. In order to analyze the bilinear regression models in an interpretable way, concepts from linear models are extended and applied to tensor spaces. Further, the book considers decompositions of tensor products into natural subspaces, and addresses maximum likelihood estimation, residual analysis, influential observation analysis and testing hypotheses, where properties of estimators such as moments, asymptotic distributions or approximations of distributions are also studied. Throughout the text, examples and several analyzed data sets illustrate the different approaches, and fresh insights into classical multivariate analysis are provided. This monograph is of interest to researchers and Ph.D. students in mathematical statistics, signal processing and other fields where statistical multivariate analysis is utilized. It can also be used as a text for second graduate-level courses on multivariate analysis..
Pindex Book 2018
The information of publication is updating

書目名稱Bilinear Regression Analysis影響因子(影響力)




書目名稱Bilinear Regression Analysis影響因子(影響力)學(xué)科排名




書目名稱Bilinear Regression Analysis網(wǎng)絡(luò)公開度




書目名稱Bilinear Regression Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Bilinear Regression Analysis被引頻次




書目名稱Bilinear Regression Analysis被引頻次學(xué)科排名




書目名稱Bilinear Regression Analysis年度引用




書目名稱Bilinear Regression Analysis年度引用學(xué)科排名




書目名稱Bilinear Regression Analysis讀者反饋




書目名稱Bilinear Regression Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:41:45 | 只看該作者
The Basic Ideas of Obtaining MLEs: Unknown Dispersion,sitions of the tensor space where within-individuals spaces also have an inner product which has to be estimated. All obtained estimators have explicit forms. A short literature review of bilinear regression models is given.
板凳
發(fā)表于 2025-3-22 02:03:43 | 只看該作者
Basic Properties of Estimators,rived for all estimators as well as the covariance among the estimators from the same model. Calculations use knowledge about the matrix normal, Wishart and inverted Wishart distributions. It is shown that the estimators are asymptotically equivalent to normally distributed random variables.
地板
發(fā)表于 2025-3-22 07:02:14 | 只看該作者
Density Approximations,on model the approximating density also appears to be a density. It can be shown that under some conditions the density represents a mixture of a normal distribution and a matrix Kotz-distribution. Similar results are shown to be available for the extended bilinear regression models.
5#
發(fā)表于 2025-3-22 09:49:07 | 只看該作者
6#
發(fā)表于 2025-3-22 13:53:01 | 只看該作者
7#
發(fā)表于 2025-3-22 18:37:20 | 只看該作者
8#
發(fā)表于 2025-3-22 21:34:46 | 只看該作者
9#
發(fā)表于 2025-3-23 04:35:19 | 只看該作者
10#
發(fā)表于 2025-3-23 08:59:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 14:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赫章县| 古丈县| 桃园市| 怀远县| 兴义市| 湟源县| 闽清县| 台江县| 永寿县| 丁青县| 平利县| 卓资县| 阳信县| 东辽县| 凤凰县| 仙居县| 夏邑县| 蛟河市| 泾源县| 泽库县| 全南县| 新沂市| 河津市| 达州市| 响水县| 曲靖市| 萍乡市| 福海县| 安徽省| 肥城市| 巴楚县| 灵石县| 二连浩特市| 双江| 新建县| 修武县| 隆昌县| 达日县| 孟村| 万盛区| 泸州市|