找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bilinear Regression Analysis; An Introduction Dietrich von Rosen Book 2018 Springer International Publishing AG, part of Springer Nature 20

[復(fù)制鏈接]
樓主: 相似
21#
發(fā)表于 2025-3-25 06:58:50 | 只看該作者
22#
發(fā)表于 2025-3-25 07:43:12 | 只看該作者
23#
發(fā)表于 2025-3-25 12:44:00 | 只看該作者
https://doi.org/10.1007/978-981-13-3699-7 approach is extended to cover tensor space decompositions which is a basic tool when considering bilinear regression models. The decompositions are illustrated in figures where one can follow how maximum likelihood estimators are obtained by projecting on appropriate subspaces.
24#
發(fā)表于 2025-3-25 19:23:39 | 只看該作者
Issues Decisive for China’s Rise or Fallsitions of the tensor space where within-individuals spaces also have an inner product which has to be estimated. All obtained estimators have explicit forms. A short literature review of bilinear regression models is given.
25#
發(fā)表于 2025-3-25 22:09:18 | 只看該作者
Energy Security and Territorial Disputesrived for all estimators as well as the covariance among the estimators from the same model. Calculations use knowledge about the matrix normal, Wishart and inverted Wishart distributions. It is shown that the estimators are asymptotically equivalent to normally distributed random variables.
26#
發(fā)表于 2025-3-26 00:27:59 | 只看該作者
27#
發(fā)表于 2025-3-26 05:09:22 | 只看該作者
https://doi.org/10.1007/978-981-13-3699-7gression models several natural residuals appear. The residuals are obtained by applying space decompositions of the tensor product of the between-individual and within-individual spaces. Density approximations are performed for the residuals. To obtain the distribution of the large residuals a para
28#
發(fā)表于 2025-3-26 11:28:01 | 只看該作者
29#
發(fā)表于 2025-3-26 14:26:04 | 只看該作者
30#
發(fā)表于 2025-3-26 20:31:02 | 只看該作者
https://doi.org/10.1007/978-981-13-3699-7A short introduction to bilinear regression analysis is presented. The statistical paradigm is introduced. Moreover, bilinear regression models are presented together with a number of examples. Some historical remarks on the material of the book are given.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 22:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
门头沟区| 镇康县| 沅陵县| 耒阳市| 广丰县| 南充市| 改则县| 温泉县| 江山市| 博湖县| 滦平县| 大兴区| 玛纳斯县| 清新县| 明光市| 肥乡县| 普格县| 惠州市| 辽宁省| 自治县| 黄冈市| 稷山县| 兴仁县| 龙泉市| 屏东县| 伊川县| 五家渠市| 汉川市| 柳林县| 万源市| 浠水县| 南皮县| 土默特右旗| 博白县| 乌鲁木齐市| 沙洋县| 阳江市| 道真| 万山特区| 沧源| 双鸭山市|