找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Analytics for Time-Critical Mobility Forecasting; From Raw Data to Tra George A. Vouros,Gennady Andrienko,David Scarlatti Book 202

[復(fù)制鏈接]
樓主: 閘門
31#
發(fā)表于 2025-3-27 00:32:24 | 只看該作者
The Perspective on Mobility Data from the Aviation Domainves. In order to do this, new concepts of operations are arising, such as trajectory-based operations, which open many new possibilities in terms of system predictability, paving the way for the application of big data techniques in the Aviation Domain. This chapter presents the state of the art in these matters.
32#
發(fā)表于 2025-3-27 04:54:39 | 只看該作者
Event Processing for Maritime Situational Awareness: a formal, computational framework for composite maritime event recognition, based on the Event Calculus, and an industry-strong maritime anomaly detection service, capable of processing daily real-world data volumes.
33#
發(fā)表于 2025-3-27 05:20:46 | 只看該作者
https://doi.org/10.1007/978-1-349-25536-8 with the detection of threats and abnormal activities. The maritime use cases and scenarios are geared on fishing activities monitoring, aligning with the European Union Maritime Security Strategy. Six scenarios falling under three use cases are presented together with maritime situational indicato
34#
發(fā)表于 2025-3-27 09:28:52 | 只看該作者
35#
發(fā)表于 2025-3-27 13:48:46 | 只看該作者
36#
發(fā)表于 2025-3-27 20:10:31 | 只看該作者
37#
發(fā)表于 2025-3-27 23:33:16 | 只看該作者
38#
發(fā)表于 2025-3-28 05:17:09 | 只看該作者
Understanding C# and the .NET Frameworkseveral tasks, such as data deduplication, record linkage, and data integration. Existing LD frameworks facilitate data integration tasks over multidimensional data. However, limited work has focused on spatial or spatiotemporal LD, which is typically much more processing-intensive due to the comple
39#
發(fā)表于 2025-3-28 09:09:54 | 只看該作者
40#
發(fā)表于 2025-3-28 10:54:50 | 只看該作者
Women, Violence and Male Power,t pillar is the problem formulation regarding two complementary tasks, namely the . (FLP) and the . (TP). The second pillar tackles the issue of effectiveness, efficiency, and scalabilityfor the corresponding predictive analytics models for big fleets of moving objects. Finally, the third pillar tak
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 17:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长垣县| 酒泉市| 唐海县| 东台市| 白银市| 隆林| 龙口市| 申扎县| 门头沟区| 曲沃县| 清原| 蒙阴县| 罗平县| 策勒县| 绍兴市| 百色市| 阳信县| 浠水县| 霍州市| 赫章县| 松滋市| 孙吴县| 霍城县| 新邵县| 阿克苏市| 清远市| 固镇县| 城固县| 鄂伦春自治旗| 涿鹿县| 灵宝市| 神农架林区| 凤庆县| 南涧| 常熟市| 高安市| 将乐县| 沂水县| 宣汉县| 泸州市| 隆昌县|