找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Analytics for Time-Critical Mobility Forecasting; From Raw Data to Tra George A. Vouros,Gennady Andrienko,David Scarlatti Book 202

[復(fù)制鏈接]
樓主: 閘門
31#
發(fā)表于 2025-3-27 00:32:24 | 只看該作者
The Perspective on Mobility Data from the Aviation Domainves. In order to do this, new concepts of operations are arising, such as trajectory-based operations, which open many new possibilities in terms of system predictability, paving the way for the application of big data techniques in the Aviation Domain. This chapter presents the state of the art in these matters.
32#
發(fā)表于 2025-3-27 04:54:39 | 只看該作者
Event Processing for Maritime Situational Awareness: a formal, computational framework for composite maritime event recognition, based on the Event Calculus, and an industry-strong maritime anomaly detection service, capable of processing daily real-world data volumes.
33#
發(fā)表于 2025-3-27 05:20:46 | 只看該作者
https://doi.org/10.1007/978-1-349-25536-8 with the detection of threats and abnormal activities. The maritime use cases and scenarios are geared on fishing activities monitoring, aligning with the European Union Maritime Security Strategy. Six scenarios falling under three use cases are presented together with maritime situational indicato
34#
發(fā)表于 2025-3-27 09:28:52 | 只看該作者
35#
發(fā)表于 2025-3-27 13:48:46 | 只看該作者
36#
發(fā)表于 2025-3-27 20:10:31 | 只看該作者
37#
發(fā)表于 2025-3-27 23:33:16 | 只看該作者
38#
發(fā)表于 2025-3-28 05:17:09 | 只看該作者
Understanding C# and the .NET Frameworkseveral tasks, such as data deduplication, record linkage, and data integration. Existing LD frameworks facilitate data integration tasks over multidimensional data. However, limited work has focused on spatial or spatiotemporal LD, which is typically much more processing-intensive due to the comple
39#
發(fā)表于 2025-3-28 09:09:54 | 只看該作者
40#
發(fā)表于 2025-3-28 10:54:50 | 只看該作者
Women, Violence and Male Power,t pillar is the problem formulation regarding two complementary tasks, namely the . (FLP) and the . (TP). The second pillar tackles the issue of effectiveness, efficiency, and scalabilityfor the corresponding predictive analytics models for big fleets of moving objects. Finally, the third pillar tak
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 17:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广安市| 黄梅县| 迁安市| 鄂托克旗| 房产| 泸溪县| 青河县| 玉田县| 班玛县| 咸丰县| 祥云县| 峨眉山市| 柳江县| 南宫市| 文登市| 秦皇岛市| 临汾市| 奉贤区| 台中县| 扎赉特旗| 日照市| 柘城县| 泾川县| 宜兰县| 承德县| 嘉义市| 清徐县| 高碑店市| 永修县| 舟山市| 长乐市| 台州市| 开封县| 潞城市| 南和县| 丹凤县| 东辽县| 阿城市| 昌图县| 辰溪县| 衡山县|