找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Analytics for Time-Critical Mobility Forecasting; From Raw Data to Tra George A. Vouros,Gennady Andrienko,David Scarlatti Book 202

[復(fù)制鏈接]
樓主: 閘門
11#
發(fā)表于 2025-3-23 11:18:53 | 只看該作者
The , Big Data Architecture for Mobility Analyticssources, this chapter presents the . architecture: Denoting “difference,” . emphasizes on the different processing requirements from loosely coupled components, which serve intertwined processing purposes, forming processing pipelines. The . architecture, being a generic architectural paradigm for r
12#
發(fā)表于 2025-3-23 15:45:17 | 只看該作者
13#
發(fā)表于 2025-3-23 20:41:26 | 只看該作者
https://doi.org/10.1007/978-1-4842-5380-9owledge. We describe four case studies in which distinct kinds of knowledge have been derived from trajectories of vessels and airplanes and related spatial and temporal data by human analytical reasoning empowered by interactive visual interfaces combined with computational operations.
14#
發(fā)表于 2025-3-23 23:54:51 | 只看該作者
15#
發(fā)表于 2025-3-24 05:42:35 | 只看該作者
https://doi.org/10.1007/978-1-349-22595-8 as from individual components and pipelines. The chapter presents the datAcron integrated system as a specific instantiation of the . architecture, aiming to satisfy requirements for big data mobility analytics, exploiting real-world mobility data for performing real-time and batch analysis tasks.
16#
發(fā)表于 2025-3-24 08:46:37 | 只看該作者
17#
發(fā)表于 2025-3-24 12:43:59 | 只看該作者
Modeling Mobility Data and Constructing Large Knowledge Graphs to Support Analytics: The datAcron Onrajectories, at multiple, interlinked levels of detail. In addition, we show that this ontology supports data transformations that are required for performing advanced analytics tasks, such as visual analytics, and we present use-case scenarios in the Air Traffic Management and maritime domains.
18#
發(fā)表于 2025-3-24 15:10:30 | 只看該作者
19#
發(fā)表于 2025-3-24 21:32:29 | 只看該作者
20#
發(fā)表于 2025-3-24 23:15:03 | 只看該作者
https://doi.org/10.1007/978-1-349-25536-8us sources for maritime surveillance is finally described, gathering 13 sources. This chapter concludes on the generation of specific datasets to be used for algorithms evaluation and comparison purposes.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 17:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新津县| 郧西县| 凤山市| 宜兰市| 新化县| 宜阳县| 遂昌县| 正宁县| 临汾市| 厦门市| 乌拉特中旗| 贵州省| 邹平县| 通化县| 天气| 邵东县| 包头市| 沙田区| 垫江县| 平山县| 丹巴县| 磴口县| 柏乡县| 涪陵区| 疏勒县| 武威市| 英山县| 富蕴县| 兴宁市| 手游| 团风县| 民勤县| 舒城县| 施秉县| 景东| 五大连池市| 湘潭市| 遵义市| 苍溪县| 米脂县| 丰县|