找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Analytics and Knowledge Discovery; 19th International C Ladjel Bellatreche,Sharma Chakravarthy Conference proceedings 2017 Springe

[復(fù)制鏈接]
樓主: EVOKE
41#
發(fā)表于 2025-3-28 17:39:02 | 只看該作者
0302-9743 nd Knowledge Discovery, DaWaK 2017, held?in Lyon, France, in August 2017..The 24 revised full papers and 11 short papers presented were carefully reviewed and?selected from 97 submissions. The papers are organized in the following topical?sections: new generation data warehouses design; cloud and No
42#
發(fā)表于 2025-3-28 21:02:03 | 只看該作者
Further Case Studies on the People ThemeBaaS users, for obvious legal and competitive reasons. In this paper, we survey the mechanisms that aim at making databases secure in a cloud environment, and discuss current pitfalls and related research challenges.
43#
發(fā)表于 2025-3-29 02:29:42 | 只看該作者
Enforcing Privacy in Cloud DatabasesBaaS users, for obvious legal and competitive reasons. In this paper, we survey the mechanisms that aim at making databases secure in a cloud environment, and discuss current pitfalls and related research challenges.
44#
發(fā)表于 2025-3-29 06:52:48 | 只看該作者
45#
發(fā)表于 2025-3-29 09:59:36 | 只看該作者
Conference proceedings 2017ms; non-functional requirements satisfaction; machine learning; social media and twitter analysis; sentiment analysis and user influence; knowledge discovery; ?and data flow management and optimization. ?.
46#
發(fā)表于 2025-3-29 12:14:43 | 只看該作者
47#
發(fā)表于 2025-3-29 16:15:15 | 只看該作者
48#
發(fā)表于 2025-3-29 21:41:26 | 只看該作者
https://doi.org/10.1007/978-1-4842-2382-6h data sources. In the paper, we perform a metric comparison among different methodologies, in order to demonstrate that methodologies classified as hybrid, ontology-based, automatic, and agile are tailored for the Big Data context.
49#
發(fā)表于 2025-3-30 00:04:52 | 只看該作者
50#
發(fā)表于 2025-3-30 04:03:54 | 只看該作者
Evaluation of Data Warehouse Design Methodologies in the Context of Big Datah data sources. In the paper, we perform a metric comparison among different methodologies, in order to demonstrate that methodologies classified as hybrid, ontology-based, automatic, and agile are tailored for the Big Data context.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 09:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
闻喜县| 青州市| 花垣县| 清新县| 祁连县| 永修县| 武夷山市| 柳河县| 丰都县| 兰考县| 玛纳斯县| 盐山县| 巧家县| 衡水市| 平江县| 萍乡市| 库伦旗| 师宗县| 克什克腾旗| 稷山县| 新巴尔虎左旗| 全南县| 调兵山市| 新野县| 天门市| 平度市| 巩义市| 揭阳市| 岱山县| 淮滨县| 罗甸县| 台南市| 南雄市| 乌鲁木齐市| 勐海县| 钟山县| 东台市| 宜章县| 辰溪县| 黎平县| 多伦县|