找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Analytics and Knowledge Discovery; 19th International C Ladjel Bellatreche,Sharma Chakravarthy Conference proceedings 2017 Springe

[復(fù)制鏈接]
查看: 28659|回復(fù): 51
樓主
發(fā)表于 2025-3-21 18:25:17 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Big Data Analytics and Knowledge Discovery
期刊簡(jiǎn)稱19th International C
影響因子2023Ladjel Bellatreche,Sharma Chakravarthy
視頻videohttp://file.papertrans.cn/186/185607/185607.mp4
發(fā)行地址Includes supplementary material:
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Big Data Analytics and Knowledge Discovery; 19th International C Ladjel Bellatreche,Sharma Chakravarthy Conference proceedings 2017 Springe
影響因子This book constitutes the refereed proceedings of the 19th International?Conference on Big Data Analytics and Knowledge Discovery, DaWaK 2017, held?in Lyon, France, in August 2017..The 24 revised full papers and 11 short papers presented were carefully reviewed and?selected from 97 submissions. The papers are organized in the following topical?sections: new generation data warehouses design; cloud and NoSQL databases; advanced programming paradigms; non-functional requirements satisfaction; machine learning; social media and twitter analysis; sentiment analysis and user influence; knowledge discovery; ?and data flow management and optimization. ?.
Pindex Conference proceedings 2017
The information of publication is updating

書目名稱Big Data Analytics and Knowledge Discovery影響因子(影響力)




書目名稱Big Data Analytics and Knowledge Discovery影響因子(影響力)學(xué)科排名




書目名稱Big Data Analytics and Knowledge Discovery網(wǎng)絡(luò)公開度




書目名稱Big Data Analytics and Knowledge Discovery網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Big Data Analytics and Knowledge Discovery被引頻次




書目名稱Big Data Analytics and Knowledge Discovery被引頻次學(xué)科排名




書目名稱Big Data Analytics and Knowledge Discovery年度引用




書目名稱Big Data Analytics and Knowledge Discovery年度引用學(xué)科排名




書目名稱Big Data Analytics and Knowledge Discovery讀者反饋




書目名稱Big Data Analytics and Knowledge Discovery讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:15:39 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:57:59 | 只看該作者
地板
發(fā)表于 2025-3-22 04:39:43 | 只看該作者
5#
發(fā)表于 2025-3-22 10:15:53 | 只看該作者
6#
發(fā)表于 2025-3-22 15:55:23 | 只看該作者
https://doi.org/10.1007/978-1-4842-2382-6the issues related to the 5 Vs (Volume, Velocity, Variety, Veracity, and Value). So it is mandatory to support the designer through automatic techniques able to quickly produce a multidimensional schema using and integrating several data sources, which can be also unstructured and, therefore, need a
7#
發(fā)表于 2025-3-22 17:27:30 | 只看該作者
https://doi.org/10.1007/978-1-4842-2382-6tics. The more complex they become, the more pressing the need for automated optimization solutions. Optimizing data flows comes in several forms, among which, optimal task ordering is one of the most challenging ones. We take a practical approach; motivated by real-world examples, such as those cap
8#
發(fā)表于 2025-3-23 00:05:10 | 只看該作者
https://doi.org/10.1007/978-1-4842-6203-0 as open and machine-readable Linked Data. Although this approach allows easier data access and consumption, appropriate mechanisms are still needed to perform proper comparisons of statistical data. Indeed, the lack of an explicit representation of how statistical measures are calculated still hind
9#
發(fā)表于 2025-3-23 04:44:43 | 只看該作者
https://doi.org/10.1007/978-1-4842-6203-0concurrent data access. The large number of users pose multiple query optimization problems. In a distributed data warehousing system such as Hadoop/Hive, queries are evaluated one at a time and processed with the MapReduce paradigm. The massive query execution usually overloads and slows down the e
10#
發(fā)表于 2025-3-23 08:35:07 | 只看該作者
Further Case Studies on the People Theme and pay-as-you-go features of cloud computing. However, most data are sensitive to some extent, and data privacy remains one of the top concerns to DBaaS users, for obvious legal and competitive reasons. In this paper, we survey the mechanisms that aim at making databases secure in a cloud environm
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 21:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
行唐县| 芦溪县| 宁国市| 确山县| 江陵县| 大悟县| 辉县市| 瑞金市| 息烽县| 宜州市| 永善县| 汉源县| 河源市| 云梦县| 万安县| 正安县| 民权县| 鄂尔多斯市| 安化县| 金门县| 东辽县| 博湖县| 安平县| 开阳县| 汉川市| 平利县| 五家渠市| 清新县| 海安县| 泊头市| 荔浦县| 桃园县| 南阳市| 宜宾县| 清徐县| 万全县| 乌鲁木齐市| 天镇县| 麻阳| 平昌县| 筠连县|