找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Analytics and Knowledge Discovery; 19th International C Ladjel Bellatreche,Sharma Chakravarthy Conference proceedings 2017 Springe

[復制鏈接]
樓主: EVOKE
41#
發(fā)表于 2025-3-28 17:39:02 | 只看該作者
0302-9743 nd Knowledge Discovery, DaWaK 2017, held?in Lyon, France, in August 2017..The 24 revised full papers and 11 short papers presented were carefully reviewed and?selected from 97 submissions. The papers are organized in the following topical?sections: new generation data warehouses design; cloud and No
42#
發(fā)表于 2025-3-28 21:02:03 | 只看該作者
Further Case Studies on the People ThemeBaaS users, for obvious legal and competitive reasons. In this paper, we survey the mechanisms that aim at making databases secure in a cloud environment, and discuss current pitfalls and related research challenges.
43#
發(fā)表于 2025-3-29 02:29:42 | 只看該作者
Enforcing Privacy in Cloud DatabasesBaaS users, for obvious legal and competitive reasons. In this paper, we survey the mechanisms that aim at making databases secure in a cloud environment, and discuss current pitfalls and related research challenges.
44#
發(fā)表于 2025-3-29 06:52:48 | 只看該作者
45#
發(fā)表于 2025-3-29 09:59:36 | 只看該作者
Conference proceedings 2017ms; non-functional requirements satisfaction; machine learning; social media and twitter analysis; sentiment analysis and user influence; knowledge discovery; ?and data flow management and optimization. ?.
46#
發(fā)表于 2025-3-29 12:14:43 | 只看該作者
47#
發(fā)表于 2025-3-29 16:15:15 | 只看該作者
48#
發(fā)表于 2025-3-29 21:41:26 | 只看該作者
https://doi.org/10.1007/978-1-4842-2382-6h data sources. In the paper, we perform a metric comparison among different methodologies, in order to demonstrate that methodologies classified as hybrid, ontology-based, automatic, and agile are tailored for the Big Data context.
49#
發(fā)表于 2025-3-30 00:04:52 | 只看該作者
50#
發(fā)表于 2025-3-30 04:03:54 | 只看該作者
Evaluation of Data Warehouse Design Methodologies in the Context of Big Datah data sources. In the paper, we perform a metric comparison among different methodologies, in order to demonstrate that methodologies classified as hybrid, ontology-based, automatic, and agile are tailored for the Big Data context.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-9 14:10
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
秭归县| 芦溪县| 西峡县| 永川市| 合肥市| 大兴区| 广南县| 双城市| 宣汉县| 台南市| 蒙自县| 长兴县| 汤阴县| 肥东县| 津南区| 西乌珠穆沁旗| 虹口区| 信阳市| 涞水县| 阿巴嘎旗| 城口县| 泰宁县| 盱眙县| 东至县| 河东区| 临邑县| 北川| 黔江区| 运城市| 德阳市| 怀远县| 澎湖县| 青川县| 集安市| 藁城市| 无锡市| 增城市| 柏乡县| 德格县| 塘沽区| 抚松县|